Những câu hỏi liên quan
CP
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
MS
6 tháng 9 2017 lúc 13:07

\(M=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}+\dfrac{1}{2017}\)

\(M=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2015}+\dfrac{1}{2017}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2016}\right)\)\(M=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2016}\right)\)\(M=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2008}\right)\)

\(M=\dfrac{1}{2009}+\dfrac{1}{2010}+...+\dfrac{1}{2016}+\dfrac{1}{2017}=N\)

Vậy \(\left(M-N\right)^{2017}=0\)

Bình luận (0)
LN
Xem chi tiết
H24
5 tháng 5 2016 lúc 9:26

Xét số chia: 1-\(\frac{1}{2}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\) +...+\(\frac{1}{2015}\) - \(\frac{1}{2016}\)

= (1+\(\frac{1}{2}\) + \(\frac{1}{3}\) + \(\frac{1}{4}\) +...+\(\frac{1}{2015}\) + \(\frac{1}{2016}\)) - 2.(\(\frac{1}{2}\) + \(\frac{1}{4}\) + ... + \(\frac{1}{2016}\))

= (1+\(\frac{1}{2}\) + \(\frac{1}{3}\) + \(\frac{1}{4}\) +...+\(\frac{1}{2015}\) + \(\frac{1}{2016}\)) - (1+\(\frac{1}{2}\) + \(\frac{1}{3}\) + \(\frac{1}{4}\) +...+\(\frac{1}{1007}\) + \(\frac{1}{1008}\))

=\(\frac{1}{1009}\) + \(\frac{1}{1010}\) + ... + \(\frac{1}{2015}\)\(\frac{1}{2016}\) => A=1

Bình luận (0)
ND
Xem chi tiết
AL
Xem chi tiết
H24
18 tháng 12 2018 lúc 11:58

\(\text{đặt}k=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\)

\(K=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)

\(K=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1008}\right)\)

\(K=\frac{1}{1009}+\frac{1}{1010}+\frac{1}{1011}+....+\frac{1}{2017}\Rightarrow A=1\)

Bình luận (0)
DN
Xem chi tiết
H24
Xem chi tiết