Tìm a, b thuộc N biết 7a+ 3b chia hết cho 23
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a;b thuộc N thỏa mãn 7a+3b chia hết cho 23
CMR 4a+5b chia hết cho 23
nếu 4a + 5b chia hết cho 23 (1)
(1) \(\Rightarrow\) (7a + 3b) + (4a + 5b) = (11a + 8b) chia hết cho 23 (2)
(1) \(\Rightarrow\) (7a + 3b) - (4a + 5b) = (3a - 2b) chia hết cho 23
\(\Rightarrow\) (3a - 2b).4 chia hết cho 23 \(\Leftrightarrow\) (12a - 8b) chia hết cho 23
(3) lấy (2) + (3) = 23a chia hết cho 23 (đúng \(\forall a\))
Vậy 4a + 5b chia hết cho 23
Giải:
Ta có: \(7a+3b⋮23\Rightarrow6\left(7a+3b\right)⋮23\)
\(\Rightarrow6\left(7a+3b\right)+\left(4a+5b\right)⋮23\)
\(\Rightarrow46a+23b⋮23\Rightarrow23\left(2a+b\right)⋮23\) (Đúng)
Vậy \(4a+5b⋮23\) (Đpcm)
Cho a , b thuộc N thỏa mãn 7a + 3b chia hết cho 23
Chứng tỏ rằng 4a + 5b chia hết cho 23
Ta có: 23a + 23b chia hết cho 23
=>\(7a+3b+16a+20b\) chia hết cho 23
=>\(7a+3b+4\left(4a+5b\right)\)chia hết cho 23
Theo đề bài: 7a + 3b chia hết cho 23
=> 4(4a + 5b) chia hết cho 23
Mà 4 không chia hết cho 23 nên 4a + 5b phải chia hết cho 23 (đpcm)
Cho a , b thuộc N thỏa mãn 7a + 3b chia hết cho 23
Chứng tỏ rằng 4a + 5b chia hết cho 23
Cho a , b biết ( a , b € N ) biết 4a +5b chia hết 23 hãy chứng minh 7a + 3b chia hết cho 23
Ta có 4a+5b chia hết cho 23 => 4(4a+5b)=16a+20b chia hết cho 23
16a+20b+7a+3b = 23a+23b chia hết cho 23
mà 16a+20b chia hết cho 23 nên 7a+3b chia hết cho 23 (dpcm)
cho a,b thuộc N nếu 6 . ( 7a + 3b ) chia hết cho 23 thì 4a + 5b chia hết 23 , điều ngược lại có đúng không
Xet bieu thuc: 6(7a+3b)+(4a+5b)
=42a+18b+4a+5b
=46a+23b
=23(2a+b)
Neu 6(7a+3b) chia het cho 23 thi 4a+5b chia het cho 23:
Vi 23 chia het cho 23 suy ra 23(2a+b) chia het cho 23 suy ra 6(7a+3b)+(4a+5b) chia het cho 23 ma 6(7a+3b) chia het cho 23 suy ra 4a+5b chia het cho 23
Neu 4a+5b chia het cho 23 thi 6(7a+3b) chia het cho 23:
Vi 23 chia het cho 23 suy ra 23(2a+b) chia het cho 23 suy ra 6(7a+3b)+(4a+5b) chia het cho 23 ma 4a+5b chia het cho 23 suy ra 6(7a+3b) chia het cho 23
cho a,b thuộc N nếu 7a + 3b chia hết cho 23 thì 4a + 5b chia hết 23 , điều ngược lại có đúng không?
1 ticks.thanks
Cho a,b thuộc N thỏa mãn .
7a+3b chia hết cho 23 .Chứng tỏ 4a+5b chia hết cho 23
Bày mình với
Ta có: 5(7a + 3b) : 23 = k (với k thuộc N)
=> 35a + 15b = 23k => 15b = 23k - 35a
Ta có: 3(4a + 5b) = 12a + 15b = 12a + 23k - 35a
= (-23a) + 23k = 23(-a + k)
Do 23(-a + k) ⋮ 23 => 3(4a + 5b) ⋮ 23 => 4a + 5b ⋮ 23 (đpcm)
Cho a,b thuộc số tự nhiên, 7a+3b chia hết cho 23 .Chứng minh rằng 4a+5b chia hết cho 23
Ta có: 7a+3b⋮23⇒6(7a+3b)⋮237a+3b⋮23⇒6(7a+3b)⋮23
⇒6(7a+3b)+(4a+5b)⋮23⇒6(7a+3b)+(4a+5b)⋮23
⇒46a+23b⋮23⇒23(2a+b)⋮23⇒46a+23b⋮23⇒23(2a+b)⋮23(Đúng)
Vậy 4a+5b⋮23
Cho a,b,c thuộc N thỏa mãn 7a+3b chia hết cho 23.
Chứng minh 4a+5b chia hết cho 23.
Giúp mình với nha mn, ai làm đúng nhất mình like ^^
Xét hiệu:
7(4a + 5b) - 4(7a + 3b)
= 28a + 35b - 28a - 12b.
= (28a - 28a) + (35b - 12b)
= 23b
Vì 23 chia hết cho 23 => 23b chia hết cho 23 => 7(4a + 5b) - 4(7a + 3b) chia hết cho 23 (1)
Mà 7a + 3b chia hết cho 23 => 4(7a + 3b) chia hết cho 3 (2)
Từ (1) và (2) => 7(4a + 5b) chia hết cho 23.
=> 4a + 5b chia hết cho 23 (ƯCLN(7; 23) = 1) (ĐPCM)
Ta có:
7a+3b⋮ 23
⇒ 4(7a+3b)⋮23
⇒28a+12b⋮23
Mà 23b⋮23
⇒28a+12b+23b⋮23
⇒28a+35b⋮23
⇒7(4a+5b)⋮23
Mà (7;23)=1
⇒4a+5b⋮23(đpcm)