Những câu hỏi liên quan
VL
Xem chi tiết
VT
Xem chi tiết
VT
28 tháng 6 2016 lúc 11:34

\(\frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{a}^3-\sqrt{b}^3}{a+b+\sqrt{ab}}\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{a+b+\sqrt{ab}}\)

\(=\sqrt{a}+\sqrt{b}-\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\sqrt{a}-\sqrt{a}+\sqrt{b}+\sqrt{b}\)

\(=2\sqrt{b}\)

Bình luận (0)
NN
Xem chi tiết
TN
Xem chi tiết
DH
11 tháng 8 2018 lúc 20:33

\(\left(\sqrt{a}+\frac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right)\div\left(\frac{a}{\sqrt{ab}+b}+\frac{b}{\sqrt{ab}-a}-\frac{a+b}{\sqrt{ab}}\right)\)

\(=\left(\frac{\sqrt{a}.\left(\sqrt{a}+\sqrt{b}\right)+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a}{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}+\frac{b}{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}-\frac{a+b}{\sqrt{ab}}\right)\)

\(=\left(\frac{a+\sqrt{ab}+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a.\sqrt{a}.\left(\sqrt{b}-\sqrt{a}\right)+b.\sqrt{b}.\left(\sqrt{a}+\sqrt{b}\right)-\left(a+b\right).\left(b-a\right)}{\sqrt{ab}.\left(b-a\right)}\right)\)

\(=\left(\frac{a+b}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a\sqrt{ab}-a^2+b\sqrt{ab}+b^2-b^2+a^2}{\sqrt{ab}.\left(b-a\right)}\right)\)

Bình luận (0)
DH
11 tháng 8 2018 lúc 20:36

giải tiếp

\(=\left(\frac{a+b}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a\sqrt{ab}+b\sqrt{ab}}{\sqrt{ab}\left(b-a\right)}\right)\)

\(=\left(\frac{a+b}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{\sqrt{ab}.\left(a+b\right)}{\sqrt{ab}.\left(b-a\right)}\right)=\left(\frac{a+b}{\sqrt{a}+\sqrt{b}}\right).\left(\frac{b-a}{a+b}\right)\)

\(=\frac{b-a}{\sqrt{a}+\sqrt{b}}=\frac{\left(b-a\right)\left(\sqrt{a}-\sqrt{b}\right)}{a-b}=\frac{b\sqrt{a}-b\sqrt{b}-a\sqrt{a}+a\sqrt{b}}{a-b}\)

Bình luận (0)
ML
11 tháng 8 2018 lúc 21:41

Mình rút gọn tiếp theo kết quả bạn MMS Hồ Khánh Châu:

\(\frac{b\sqrt{a}-b\sqrt{b}-a\sqrt{a}+a\sqrt{b}}{a-b}.\)

\(=\frac{b\left(\sqrt{a}-\sqrt{b}\right)-a\left(\sqrt{a}-\sqrt{b}\right)}{a-b}\)

\(=\frac{\left(b-a\right)\left(\sqrt{a}-\sqrt{b}\right)}{a-b}\)

\(=\sqrt{b}-\sqrt{a}\)

Bình luận (0)
HD
Xem chi tiết
HD
11 tháng 9 2016 lúc 8:39

ace nào giải giúp với ạ

Bình luận (0)
NT
Xem chi tiết
ND
Xem chi tiết
PN
1 tháng 10 2017 lúc 16:00

Ta có: a√a = √(a².a) = (√a)³ 
=> 1 - a√a = 1 - (√a)³ = (1 - √a)(a + √a + 1) (1) 
Tương tự: 1 + a√a = 1 + (√a)³ = (1 + √a)(a - √a + 1) (2) 
Từ (1) và (2) => [ (1-a√a/1-√a+√a).(1+a√a/1+√a-√a) + 1 ]. 
= [(1 - √a)(a + √a + 1)/(1 - √a) + √a].[(1 + √a)(a - √a + 1)/(1 + √a) - √a ] +1 
=(a + √a + 1 + √a)(a - √a + 1- √a) + 1 
= (a + 2√a + 1)(a - 2√a + 1) + 1 
= (√a + 1)²(√a - 1)² +1 
= [(√a + 1)(√a - 1)]² + 1 
= (a - 1)² + 1 
= a² - 2a + 1 + 1 
= a² - 2a + 2 
=> [ (1-a√a/1-√a+√a).(1+a√a/1+√a-√a) + 1 ] = a² - 2a + 2 (3) 
Áp dụng (3) vào A ta được A = [(1 - a)²]/(a² - 2a + 2) 
<=> A = (a² - 2a + 1)/(a² - 2a + 2) 

Bình luận (0)
NK
Xem chi tiết
NA
Xem chi tiết
TN
4 tháng 10 2015 lúc 20:32

\(=\left(\frac{2\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{\sqrt{a}-\sqrt{b}}{2\left(\sqrt{a}+\sqrt{b}\right)}\right).\frac{2\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{\sqrt{b}}{\sqrt{b}-\sqrt{a}}\)

\(=\left(\frac{4\sqrt{ab}+\left(\sqrt{a}-\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right).\frac{2\sqrt{a}}{\sqrt{a}+\sqrt{b}}-\frac{\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

\(=\left(\frac{4\sqrt{ab}+a-2\sqrt{ab}+b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right).\frac{2\sqrt{a}}{\sqrt{a}+\sqrt{b}}-\frac{\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

\(=\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right).\frac{2\sqrt{a}}{\sqrt{a}+\sqrt{b}}-\frac{\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

\(=\frac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

\(=\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}-\sqrt{b}}=1\)

tick cho mình nha

Bình luận (0)
CN
4 tháng 10 2015 lúc 14:57

trục căn ở mẫu là đc :D

Bình luận (0)
LM
Xem chi tiết