(1+2+3+4...+999+1000)><(105><102-105><101-45-60)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
A=1/1×2+1/3×4+1/4×5+...1/999×1000
B=1/501×1000+1/502×999+...+1/999×502+1/1000×501
Tính A/B
tính B=(2016/1000+2016/999+2016/998+...+2016/501)/(-1/1*2+/-1/3*4+-1/5*6+...+-1/999*1000)
\(B=\frac{\frac{2016}{1000}+\frac{2016}{999}+...+\frac{2016}{501}}{\frac{-1}{1.2}+\frac{-1}{3.4}+...+\frac{-1}{999.1000}}=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{999.1000}\right)}\)
\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}\right)}\)
\(=\frac{2016\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{999}+\frac{1}{1000}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\right)\right]}\)
\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{999}+\frac{1}{1000}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{500}\right)\right]}\)
\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+....+\frac{1}{999}+\frac{1}{1000}\right)}=\frac{2016}{-1}=-2016\)
Vậy B = - 2016
Bạn Xyz cho mik hỏi ở phần mẫu số tại sao lại có -2*(1/2+1/4+...+1/1000) vậy? Nó ở đâu ra thế?
1-1/2+1/3-1/4+......+1/999-1/1000
500-500/501-501/502-502/503-....-999/1000
các bạn ơi giúp nhanh nha mình đang cần rất gấp
Tính nhanh : \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt[1]{2}+\sqrt[2]{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt[3]{4}+\sqrt[4]{5}}+...+\frac{1}{\sqrt{999}+\sqrt{1000}}+\frac{1}{\sqrt[999]{1000}+\sqrt[1000]{1001}}\)
So sánh :A=1-1/2+1/3-1/4+...+1/999-1/1000 và B=500-500/501-501/502-502/503-...-999/1000
Xác định 3 chữ số nằm bên trái của số: A = 1+22+33+44+....+999999+10001000
so sánh m=1/2*3/4*5/6...999/1000;n=2/3*3/4....998/999
Cho C = 11 + 22 + 33 + 44 + ....... + 999999 + 10001000
Khi đó , ba chữ số đầu của C là : ......
Tính:
\(\left(\frac{1000}{1}+\frac{999}{2}+\frac{998}{3}+\frac{997}{4}+...+\frac{2}{999}+\frac{1}{1000}\right)\)\(:\)\(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{1000}\right)\)
1/1*2+1/2*3+1/3*4+.......+1/999*1000+1
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{999.1000}+1\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{999}-\dfrac{1}{1000}+1\)
\(=1-\dfrac{1}{1000}+1\)
\(=\dfrac{1999}{1000}\).