Những câu hỏi liên quan
NM
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
TD
9 tháng 5 2019 lúc 20:26

Cách này cũng đúng nhưng có cách khác nhanh hơn

S = ( 5 + 5^2 + 5^3 + 5^4 ) + .....

Gộp 4 số liên tiếp lại rồi C/M

Chúc học tốt

Bình luận (0)
DD
6 tháng 12 2020 lúc 19:58
Bạn làm đúng rồi nhưng hơi dài
Bình luận (0)
 Khách vãng lai đã xóa
NT
23 tháng 3 2021 lúc 20:14

6/7/8/9

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
9 tháng 5 2019 lúc 20:28

từ (1) và (2)

=> S ⋮5

mình nghĩ hơi thừa chỉ cần từ (1) là đủ rồi

nên đánh (2) vào"=>S⋮5"

Để khi chứng tỏ thì nói "từ (1) và (2) => S ⋮ 65"

Bình luận (0)
PM
9 tháng 5 2019 lúc 21:07

1) Ở (1) vô lý nha bạn, tổng S đều có số hạng 5 là sao? số hạng có tận cùng là 5 chứ.

Ok, mik nhận xét thế thôi nhé. Cách trình bày của bạn khá chặt chẽ. Mà bạn viết vào vở thì sử dụng kí hiệu toán học ý, trong toán đừng viết chữ nhiều quá. ( VD: chia hết cho)

Bình luận (2)
NM
Xem chi tiết
LJ
Xem chi tiết
HC
Xem chi tiết
HT
13 tháng 4 2016 lúc 12:45

không biết thì thôi 

vu tien thinh

Bình luận (0)
ND
13 tháng 4 2016 lúc 12:43

tao khong biet

Bình luận (0)
PT
Xem chi tiết
TA
Xem chi tiết
TT
1 tháng 10 2017 lúc 12:53

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

Bình luận (0)
TP
1 tháng 10 2017 lúc 20:46

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)

Bình luận (0)