Những câu hỏi liên quan
ND
Xem chi tiết
HD
25 tháng 1 2016 lúc 21:51

Gọi 2 số là : a;a+1

+ Nếu a=2k => ĐPCM (1)

+ Nếu a=2k+1 thì a+1=2k+1+1=2k+2 chia hết cho 2 (2)

Từ (1) và (2) => trong 2 số tự nhiên liên tiếp luôn có 1 số chia hết cho 2

Bình luận (0)
LA
25 tháng 1 2016 lúc 21:49

trong 2 số tự nhiên liên tiếp chắc chắn có 1 số chẵn mà số chẵn lại chia hết cho 2 nên 2 số tự nhiên liên tiếp luôn có 1 số chia hết 2

Bình luận (0)
MO
25 tháng 1 2016 lúc 21:51

hai số tự nhiên liên tiếp sẽ có một số chẵn và một số lẻ .mà số chẵn là số chia hết cho 2 vậy trong hai số tự nhiên liên tiếp luôn có 1 số chia hết cho 2

Bình luận (0)
HH
Xem chi tiết
KS
11 tháng 10 2018 lúc 21:24

a/ Gọi 3 số nguyên liên tiếp là a; a+1; a+2.

Theo GT ta có : \(a+\left(a+1\right)+\left(a+2\right)=3a+3\)

=3(a+1) \(⋮3\)(vì \(3⋮3\))

Vậy tổng ba số nguyên liên tiếp là số chia hết cho 3.

b/ Gọi 4 số cần tìm là a ; a+1; a+2 ; a+3

Theo Gt ta có :a+(a+1)+(a+2)+(a+3) = 4a+6

=2(2a+3)\(⋮̸4\)( vì số chia hết cho 2 chưa chắc chia hết cho 4)

Vậy tổng của 4 số nguyên liên tiếp không chia hết cho 4.

Bình luận (0)
PM
11 tháng 10 2018 lúc 21:26

a) 3 số liên tiếp là: n, n+1, n+2. ( n thuộc N )

Ta có: n + (n+1) + (n+2)= 3n+3 = 3(n+1) chia hết cho 3

b) 4 số liên tiếp: n, n+1, n+2, n+3 (n thuộc N )

Ta có: n+(n+1)+(n+2)+(n+3)= 4n+6 ko chia hết cho 4 vì: 4n chia hết cho 4 nhưng 6 ko chia hết cho 4.

Bình luận (0)
CV
Xem chi tiết
BH
Xem chi tiết
LG
Xem chi tiết
H24
25 tháng 7 2018 lúc 17:28

Bài 1 :

a/ Gọi ba số tự nhiên liên tiếp là :  \(a;\left(a+1\right);\left(a+2\right)\)

Ta có : \(a+\left(a+1\right)+\left(a+2\right)=3.a+3⋮3\)

Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3

b/  Gọi bốn số tự nhiên liên tiếp là : \(a;\left(a+1\right);\left(a+2\right);\left(a+3\right)\)

Ta có : \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)\)

            \(=a+a+1+a+2+a+3\)

             \(=4a+6\)không chia hết cho 4

Vậy tổng của bốn số tự nhiên liên tiếp không chia hết cho 4

Bình luận (0)
H24
25 tháng 7 2018 lúc 17:38

Bài 2 :

Ta có : \(\overline{aaaaaa}=\overline{a}.111111=\overline{a}.7.31746\)

Vậy \(\overline{aaaaaa}\)bao giờ cũng chia hết cho 7

Bài 3 :

Ta có \(\overline{abcabc}=\overline{abc}.\left(1000+\overline{abc}\right)=\overline{abc}.\left(1000+1\right)=\overline{abc}.1001=\overline{abc}.7.11.13⋮11\)

Vậy : \(\overline{abcabc}\)bao giờ cũng chia hết cho 11

Bình luận (0)
H24
25 tháng 7 2018 lúc 17:45

Bài 4 :

Gọi hai số ấy là \(\overline{ab}\)và \(\overline{ba}\)

Ta có :   \(\overline{ab}+\overline{ba}=\left(10.a+b.1\right)+\left(10.b+a.1\right)=11.a+b.11⋮11\)

 \(\Rightarrow\overline{ab}+\overline{ba}\)

Vậy tổng của số có hai chữ số với số có hai chữ số đó viết theo thứ tự ngược lại luôn chia hết cho 11

Bình luận (0)
H24
Xem chi tiết
GD

Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2

TH1: Nếu a chia hết cho 3 => Đề bài đúng

TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)

=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng

TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)

=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng

TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)

Bình luận (0)
GD

Bài 5:

Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3

Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2

Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4

Nhưng: 2 không chia hết cho 4

Nên: 4(b+1)+2 không chia hết cho 4

Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4 

Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)

Bình luận (0)
NH
2 tháng 12 2023 lúc 8:37

Bài 3: 

\(\overline{7a4b}\) ⋮ 4 ⇒ \(\overline{4b}\)⋮ 4 ⇒ b = 0; 4; 8

Nếu b = 0 ta có: \(\overline{7a40}\)⋮ 7 

⇒ 7040 + a \(\times\) 100 ⋮ 7

1005\(\times\) 7+ 5 + 14a + 2a ⋮ 7 

        5 + 2a ⋮ 7 ⇒ 2a = 2; 9; 16⇒ a = 1; \(\dfrac{9}{3}\);8 (1)

Nếu b = 8 ta có: \(\overline{7a4b}\) = \(\overline{7a48}\)⋮ 7 

⇒ 7048 + a\(\times\) 100 ⋮ 7

1006\(\times\) 7 + 6 + 14a + 2a ⋮ 7

       6 + 2a ⋮ 7 ⇒ 2a = 1; 8; 15 ⇒ a = \(\dfrac{1}{2}\); 4; \(\dfrac{15}{2}\) (2)

Nếu b = 4 ta có: \(\overline{7a4b}\)  =  \(\overline{7a44}\) ⋮ 7

⇒ 7044 + 100a ⋮ 7

1006.7 + 2 + 14a + 2a ⋮ 7 

       2 + 2a ⋮ 7 ⇒ 2a = 5; 12;19 ⇒ a = \(\dfrac{5}{2}\); 6; \(\dfrac{9}{2}\) (3)

Kết hợp (1); (2); (3) ta có:

(a;b) = (1;0); (8;0); (4;8); (6;4)

Bình luận (0)
TG
Xem chi tiết
PH
Xem chi tiết
AN
Xem chi tiết
BT
28 tháng 9 2015 lúc 13:07

a, gọi 3stn có dạng là : k+1;k+2;k+3

ta có tổng của k+1;k+2;k+3= k+1+k+2+k+3=3k+6 chia hết cho 3 => đpcm

b, gọi 4 stn liên tiếp là; k+1;k+2;k+3;k+4

ta có tổng của k+1;k+2;k+3;k+4= k+1+k+2+k+3+k+4= 4k+ 10 ko chia hết cho 4=> đpcm

Bình luận (0)
ND
28 tháng 9 2015 lúc 13:14

hung pham tien : đpcm là điều phải chứng minh

Bình luận (0)