Những câu hỏi liên quan
KB
Xem chi tiết
DH
28 tháng 5 2015 lúc 20:46

a, Ra đáp án luôn nha

B=(2x+5)/(3x-1)

b,Để B>0 thì 2x+5 và 3x-1 phải cùng dấu 

Đáp án : x khác 0;-1;-2

Bình luận (0)
TT
28 tháng 5 2015 lúc 15:29
  
Bình luận (0)
SF
13 tháng 12 2017 lúc 21:06

a, Ra đáp án luôn nha
B=(2x+5)/(3x-1)
b,Để B>0 thì 2x+5 và 3x-1 phải cùng dấu
Đáp án : x khác 0;-1;-2

chúc bn hok tốt @_@

Bình luận (0)
PD
Xem chi tiết
CA
Xem chi tiết

\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}\)

\(=\frac{\left(x-\frac{2}{5}\right)\left(x+3\right)}{\left(x+\frac{1}{3}\right)\left(x+3\right)}\)

\(=\frac{x-\frac{2}{5}}{x+\frac{1}{3}}\)

Bình luận (0)
LN
27 tháng 6 2019 lúc 10:28

=\(\frac{2x^3-6x^2-x^2+3x-15x+45}{3x^3-9x^2-10x^2+30x+3x-9}\)

=\(\frac{2x^2\left(x-3\right)-x\left(x-3\right)-15\left(x-3\right)}{3x^2\left(x-3\right)-10x\left(x-3\right)+3\left(x-3\right)}\)

=\(\frac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)

=\(\frac{2x^2-6x+5x-15}{3x^2-9x-x+3}\)

=\(\frac{2x\left(x-3\right)+5\left(x-3\right)}{3x\left(x-3\right)-\left(x-3\right)}\)

=\(\frac{2x+5}{3x-1}\)

Bình luận (0)

\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}\)

\(=\frac{2x^3-6x^2-x^2+3x-15x+45}{3x^3-9x^2-10x^2+30x+3x-9}\)

\(=\frac{2x^2\left(x-3\right)-x\left(x-3\right)-15\left(x-3\right)}{3x^2\left(x-3\right)-10x\left(x-3\right)+3\left(x-3\right)}\)

\(=\frac{\left(2x^2-x-15\right)\left(x-3\right)}{\left(3x^2-10x+3\right)\left(x-3\right)}\)

\(=\frac{2x^2-x-15}{3x^2-10x+3}\)

Bình luận (0)
NT
Xem chi tiết
NT
16 tháng 8 2018 lúc 19:38

Câu a trả lời chi tiết giúp mình ạ

Bình luận (0)
NL
Xem chi tiết
TN
31 tháng 12 2017 lúc 18:09

Xét tử thức ta có

2x3-7x2-12x+45

= 2x3+5x2-12x2-30x+18x+45

= x2(2x+5)-6x(2x+5)+9(2x+5)

= (2x+5)(x2-6x+9)

= (2x+5)(x-3)(1)

Xét mẫu thức ta có

3x3-19x2+33x-9

= 3x3-x2-18x2+6x+27x-9

= x2(3x-1)-6x(3x-1)+9(3x-1)

= (3x-1)(x2-6x+9)

= (3x-1)(x-3)2 (2)

Thay (1) và (2) vào A ta được\(A=\frac{\left(2x+5\right)\left(x-3\right)^2}{\left(3x-1\right)\left(x-3\right)^2}=\frac{2x+5}{3x-1}\)

Bình luận (0)
MT
Xem chi tiết
NA
Xem chi tiết
LG
19 tháng 4 2018 lúc 18:59

\(B=\dfrac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}\)

\(=\dfrac{2x^3+5x^2-12x^2-30x+18x+45}{3x^3-x^2-18x^2+6x+27x-9}\)

\(=\dfrac{\left(2x^3+5x^2\right)-\left(12x^2+30x\right)+\left(18x+45\right)}{\left(3x^3-x^2\right)-\left(18x^2-6x\right)+\left(27x-9\right)}\)

\(=\dfrac{x^2\left(2x+5\right)-6x\left(2x+5\right)+9\left(2x+5\right)}{x^2\left(3x-1\right)-6x\left(3x-1\right)+9\left(3x-1\right)}\)

\(=\dfrac{\left(2x+5\right)\left(x^2-6x+9\right)}{\left(3x-1\right)\left(x^2-6x+9\right)}\)

\(=\dfrac{\left(2x+5\right)\left(x-3\right)^2}{\left(3x-1\right)\left(x-3\right)^2}\)

ĐKXĐ : \(\left\{{}\begin{matrix}3x-1\ne0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{1}{3}\\x\ne3\end{matrix}\right.\)

\(a,B=\dfrac{\left(2x+5\right)\left(x-3\right)^2}{\left(3x-1\right)\left(x-3\right)^2}=\dfrac{2x+5}{3x-1}\)

b,Để \(B>0\)

\(\Leftrightarrow\dfrac{2x+5}{3x-1}>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x+5>0\\3x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x+5< 0\\3x-1< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-\dfrac{5}{2}\\x>\dfrac{1}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< -\dfrac{5}{2}\\x< \dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x>\dfrac{1}{3}\\x< -\dfrac{5}{2}\end{matrix}\right.\) thì B > 0

Bình luận (0)
SK
19 tháng 4 2018 lúc 19:07

a) ĐKXĐ:\(x\ne\dfrac{1}{3};x\ne3\)

\(B=\dfrac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}\)

\(B=\dfrac{\left(2x^3-12x^2+18x\right)+\left(5x^2-30x+45\right)}{\left(3x^3-18x^2+27x\right)-\left(x^2-6x+9\right)}\)

\(B=\dfrac{2x\left(x^2-6x+9\right)+5\left(x^2-6x+9\right)}{3x\left(x^2-6x+9\right)-\left(x^2-6x+9\right)}\)

\(B=\dfrac{\left(2x+5\right)\left(x^2-6x+9\right)}{\left(3x-1\right)\left(x^2-6x+9\right)}\)

\(B=\dfrac{2x+5}{3x-1}\)

b) Để \(B>0\Leftrightarrow\dfrac{2x+5}{3x-1}>0\Leftrightarrow2x+5\)\(3x-1\) cùng dấu

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x+5>0\\3x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x+5< 0\\3x-1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{-5}{2}\\x>\dfrac{1}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{-5}{2}\\x< \dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1}{3}\\x< -\dfrac{5}{2}\end{matrix}\right.\)

Bình luận (0)
NT
Xem chi tiết
DH
24 tháng 1 2021 lúc 11:35

\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{\left(2x+5\right)\left(x-3\right)^2}{\left(3x-1\right)\left(x-3\right)^2}=\frac{2x+5}{3x-1}\)

Bình luận (0)
 Khách vãng lai đã xóa
EC
24 tháng 1 2021 lúc 13:26

Ta có tử bằng:2x3-7x2-12x+45

                    =(2x3-6x2)-(x2-3x)-(15x-45)

                    =2x2(x-3)-x(x-3)-15(x-3)

                    =(x-3)(2x2-x-15)

                    =(x-3)(2x2-6x+5x-15)

                   =(x-3)2(2x+5)                   (1)

Ta có mẫu bằng:3x3-19x2+33x-9

                        =(3x3-x2)-(19x2-6x)+(27x-9)

                        =x2(3x-1)-6x(3x-1)+9(3x-1)

                        =(3x-1)(x2-6x+9)

                        =(3x-1)(x-3)2                (2)

Thay (1) và (2) vào phân thức ,ta có:

\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{\left(x-3\right)^2\left(2x+5\right)}{\left(x-3\right)^2\left(3x-1\right)}=\frac{2x+5}{3x-1}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
HS
24 tháng 11 2018 lúc 10:35

\(a)\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{(x-3)^2(2x+5)}{(3x-1)(x-3)^2}(ĐK:x\ne3,x\ne\frac{1}{3})\)

                                                \(=\frac{2x+5}{3x-1}\)

Còn bài b bạn tự làm nhé

Bình luận (0)
PH
24 tháng 11 2018 lúc 19:34

Điều kiện: \(x\ne\left\{-1;-2;-5\right\}\)

\(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\frac{x^2\left(x+1\right)-4\left(x+1\right)}{x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)}\)

\(=\frac{\left(x+1\right)\left(x^2-4\right)}{\left(x+1\right)\left(x^2+7x+10\right)}\)

\(=\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]}\)

\(=\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+5\right)}=\frac{x-2}{x+5}\)

Điều kiện: \(x\ne\left\{3;\frac{1}{3}\right\}\)

\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{2x^3-6x^2-x^2+3x-15x+45}{3x^3-9x^2-10x^2+30x+3x-9}\)

\(=\frac{2x^2\left(x-3\right)-x\left(x-3\right)-15\left(x-3\right)}{3x^2\left(x-3\right)-10x\left(x-3\right)+3\left(x-3\right)}\)

\(=\frac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)

\(=\frac{2x^2-x-15}{3x^2-10x+3}=\frac{2x\left(x-3\right)+5\left(x-3\right)}{3x\left(x-3\right)-\left(x-3\right)}\)

\(=\frac{\left(2x+5\right)\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)}=\frac{2x+5}{3x-1}\)

Bình luận (0)