Những câu hỏi liên quan
KD
Xem chi tiết
OO
Xem chi tiết
CL
Xem chi tiết
NA
6 tháng 5 2020 lúc 21:38

a) 234 chia hết cho 2 và chia hết cho 3

b) 750 chia hết cho 2 và chia hết cho 5

c) 243 chia hết cho 9

d) 831 chia hết cho 3 nhưng không chia hết cho 9

e) 891 chia hết cho 3 và chia hết cho 9

HOK TỐT

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
LD
4 tháng 7 2017 lúc 11:17

2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1

Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1

3) Ta có : 5n - 1 chia hết chi n - 2  

=> 5n - 10 + 9 chia hết chi n - 2 

=> 5(n - 2) + 9 chia hết chi n - 2 

=> n - 2 thuộc Ư(9) = {1;3;9}

Ta có bảng : 

n - 2139
n3511
Bình luận (0)
LD
4 tháng 7 2017 lúc 10:57

1) Ta có : 2n + 3 chia hết cho 3n + 1 

<=> 6n + 9 chia hết cho 3n + 1

<=> 6n + 2 + 7 chia hết cho 3n + 1

=>  7 chia hết cho 3n + 1

=> 3n + 1 thuộc Ư(7) = {1;7}

Ta có bảng : 

3n + 117
3n06
n02

Vậy n thuộc {0;2}

Bình luận (0)
NP
Xem chi tiết
LC
5 tháng 7 2017 lúc 11:14

Ta có n-3=n+4-7

6)=>n-4+7 chia hết cho n+4

=>7 chia hết cho n+4

=> n+4 thuộc Ư(7)

=> n+4 thuộc {1, -1,7,-7}

=> n thuộc {-3,-5,3,-11}

Bình luận (0)
NT
Xem chi tiết
AC
8 tháng 11 2015 lúc 16:20

tich minh noi cho

 

Bình luận (0)
GT
25 tháng 2 2016 lúc 10:58

k rồi đó sao không nói

Bình luận (0)
NC
Xem chi tiết
NM
24 tháng 7 2023 lúc 11:21

A B C H E F I M K

1/

Xét tg vuông ABH có

\(AH^2=AE.AB\)  (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

Xét tg vuông ACH có

\(AH^2=AF.AC\)  (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow AE.AB=AF.AC\) (cùng bằng \(AH^2\) )

2/

\(HE\perp AB\) (gt)

\(AC\perp AB\) (gt) \(\Rightarrow AF\perp AB\)

=> AF//HE (cùng vuông góc với AB) (1)

Ta có

\(HF\perp AC\) (gt)

\(AB\perp AC\) (gt) \(\Rightarrow AE\perp AC\)

=> AE//HF (cùng vuông góc với AC) (2)

Từ (1) và (2) => AEHF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hình bình hành )

=> AE = HF

Xét tg vuông AHC có

\(HF^2=AF.FC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow AE^2=AF.FC\)

3/

E; F cùng nhìn AH dưới góc \(90^o\)

=> AEHF là tứ giác nội tiếp

\(\Rightarrow\widehat{BAH}=\widehat{EFH}\) (góc nội tiếp cùng chắn cung EH) (1)

\(\widehat{AEF}=\widehat{EFH}\) (góc so le trong) (2)

\(\widehat{AEF}=\widehat{IEB}\) (góc đối đỉnh) (3)

\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) ) (4)

Xét tg IBE và tg IFC có

Từ (1) (2) (3) (4) \(\Rightarrow\widehat{IEB}=\widehat{ACB}\)

\(\widehat{EIB}\) chung

=> tg IBE đồng dạng với tg IFC (g.g.g)

\(\Rightarrow\dfrac{IE}{IC}=\dfrac{IB}{IF}\Rightarrow IE.IF=IB.IC\)

4/

Ta có

\(\widehat{BAK}+\widehat{BAM}=\widehat{MAK}=90^o\)

\(\widehat{CAM}+\widehat{BAM}=\widehat{BAC}=90^o\)

\(\Rightarrow\widehat{BAK}=\widehat{CAM}\)

Mà \(AM=\dfrac{BC}{2}=MB=MC\) (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)

=> tg AMC cân tại M \(\Rightarrow\widehat{CAM}=\widehat{ACM}\)

\(\Rightarrow\widehat{ACM}=\widehat{BAK}\)

Xét tg ABK và tg ACK có

\(\widehat{AKC}\) chung

\(\widehat{BAK}=\widehat{ACM}\) (cmt)

=> tg ABK đồng dạng với tg ACK (g.g.g)

\(\Rightarrow\dfrac{KB}{AK}=\dfrac{AK}{KC}\Rightarrow AK^2=KB.KC\)

Xét tg vuông AKM có

\(AK^2=KH.KM\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow KH.KM=KB.KC\)

 

 

 

 

 

 

 

Bình luận (0)
H24
Xem chi tiết

Ví dụ: a = 6, b = 3. Ta có a chia hết cho 3 và b chia hết cho 3, nhưng (a+b) = 9 không chia hết cho 6.

Ví dụ: a = 9, b = 3. Ta có a chia hết cho 3 và b chia hết cho 3, nhưng (a+b) = 12 không chia hết cho 9.

Ví dụ: a = 2, b = 4. Ta có a chia hết cho 2 và b chia hết cho 4, nhưng (a+b) = 6 không chia hết cho 4.

Ví dụ: a = 2, b = 4. Ta có a chia hết cho 2 và b chia hết cho 4, nhưng (a+b) = 6 không chia hết cho 6.

Ví dụ: a = 6, b = 9. Ta có a chia hết cho 6 và b chia hết cho 9, nhưng (a+b) = 15 không chia hết cho 6.

Ví dụ: a = 6, b = 9. Ta có a chia hết cho 6 và b chia hết cho 9, nhưng (a+b) = 15 không chia hết cho 9.

Ví dụ: a = 2, b = 2. Ta có a chia hết cho 2 và b chia hết cho 2, nhưng (a+b) = 4 không chia hết cho 4.
😎 Ví dụ: a = 2, b = 2. Ta có a chia hết cho 2 và b chia hết cho 2, nhưng (a+b) = 4 không chia hết cho 6.

Ví dụ: a = 3, b = 9. Ta có a chia hết cho 3 và b chia hết cho 9, nhưng (a+b) = 12 không chia hết cho 9.

Ví dụ: a = 3, b = 9. Ta có a chia hết cho 3 và b chia hết cho 9, nhưng (a+b) = 12 không chia hết cho 6.

Bình luận (0)
NT
Xem chi tiết
NH
24 tháng 7 2015 lúc 8:55

chắc phải làm dài hơn đấy

Bình luận (0)
FZ
24 tháng 7 2015 lúc 8:57

ngo le ngoc hoa:Quản lí của olm.

Bình luận (0)
H24
6 tháng 10 2016 lúc 19:37

nhin thoi da ko muon lam suy nghi di ko den lop ma hoi cac ban minh chac ai cung tra loi duoc

Bình luận (0)
NN
Xem chi tiết