Những câu hỏi liên quan
H24
Xem chi tiết
MH
16 tháng 8 2021 lúc 8:42

2

Ta có:

VP=(a+b)3−3ab(a+b)VP=(a+b)3-3ab(a+b)

     =a3+b3+3ab(a+b)−3ab(a+b)=a3+b3+3ab(a+b)-3ab(a+b)

     =a3+b3=VT(dpcm)

Bình luận (0)
CH
16 tháng 8 2021 lúc 8:45

1, \(VT=a^2+b^2=a^2+b^2+2ab-2ab=\left(a+b\right)^2-2ab=VP\left(đpcm\right)\)

Bình luận (0)
DD
Xem chi tiết
NT
4 tháng 9 2021 lúc 17:34

a. Ta có

\(VP=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)

\(=a^3+b^3\) ( đpcm )

b. Ta có

\(VP=\left(a-b\right)^3+3ab\left(a-b\right)\)

\(=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2\)

\(=a^3-b^3\) ( đpcm )

Bình luận (0)
NL
Xem chi tiết
ST
10 tháng 9 2017 lúc 5:03

a, VP = (a + b)3 - 3ab(a + b) 

= a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2

= a3 + b3 = VT 

b, VP = (a - b)3 + 3ab(a - b)

= a3 - 3a2b + 3ab2 - b3 + 3a2b - 3ab2

= a3 - b3 = VT

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
PA
19 tháng 7 2016 lúc 21:35

Xét VP : \(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3\)

vậy VT=VP

=> \(a^3+b^3=\left(-5\right)^3-30.\left(-5\right)=25\)

Bình luận (0)
PA
19 tháng 7 2016 lúc 21:37

Xét VP: \(\left(a-b\right)^3+3ab\left(a-b\right)=a^3-3a^2b+3ab^2-b^2+3a^2b-3ab^2=a^3-b^3\)

=> VT=VP

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 6 2017 lúc 14:55

Biến đổi VP

=> VT = VP

=> Đpcm

Bình luận (0)
H24
Xem chi tiết
MC
Xem chi tiết
DT
5 tháng 7 2016 lúc 16:53

\(a+b=1\Rightarrow\left(a+b\right)^3=1^3\Rightarrow a^3+b^3+3ab\left(a+b\right)=1\)

mà a+b=1

\(\Rightarrow a^3+b^3+3ab=1\)

T I C K nha

Bình luận (0)
BT
6 tháng 7 2016 lúc 8:49

Tùng ơi, bài này cô sửa lâu rồi. Làm sai là nhục lắm đấy!

Bình luận (0)
NT
28 tháng 6 2021 lúc 15:13

=1 nha

Học tốt!

Bình luận (0)
 Khách vãng lai đã xóa