Những câu hỏi liên quan
ND
Xem chi tiết
M2
9 tháng 10 2019 lúc 21:12

tớ có 2 cách làm cậu chọn cách nào 

Bình luận (0)
ND
9 tháng 10 2019 lúc 21:31

Tùy bạn sao cũng được nhuwng giải theo cách lớp 7 cho mình với

Bình luận (0)
M2
9 tháng 10 2019 lúc 21:33

223 + \(\frac{1}{2^{25}}\)+ 1 và 225 +\(\frac{1}{2^{27}}\)+ 1 

Như thế này à ??

Bình luận (0)
NM
Xem chi tiết
NH
Xem chi tiết
PY
Xem chi tiết
NQ
Xem chi tiết
ND
22 tháng 10 2017 lúc 7:25

X=2^23+1/2^25+1   =   1/2^2+1  =  1/4+1    =  1/5

Y=2^25+1/2^27+1  =   1/2^2+1  = 1/4+1  =1/ 5

Vì 1/5 = 1/5 nên X=Y

Chúc bạn học tốt

Bình luận (0)
PP
Xem chi tiết
TN

Gọi 223+1/225+1 là A;225+1/227+1 là B 

Ta có 22A=225+4/225+1

22A=225+1/225+1 + 3/225+1    

22A=1+3/225+1

Có 22B=227+4/227+1

22B=227+1/227+1 + 3/227+1

22B=1+3/227+1

Vì 1+3/225+1>1+3/227+1

nên 22A>22B

nên A>B

Vậy A>B

  

Bình luận (0)
 Khách vãng lai đã xóa
TN

Cảm ơn Pé's Pơ's nhiều nha

Bình luận (0)
 Khách vãng lai đã xóa

Ta có:\(\frac{a}{b}< \frac{a+c}{b+c}\)

\(\Leftrightarrow\frac{2^{25}+1}{2^{27}+1}< \frac{2^{25}+1+1}{2^{27}+1+1}=\frac{2^{25}+2}{2^{27}+2}=\frac{2^2.\left(2^{23}+1\right)}{2^2.\left(2^{25}+1\right)}=\frac{2^{23}+1}{2^{25}+1}\)

\(\Rightarrow\frac{2^{23}+1}{2^{25}+1}>\frac{2^{25}+1}{2^{27}+1}\)

Chúc bạn học tốt

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
DH
18 tháng 7 2017 lúc 19:59

Vì \(2^{25}+1< 2^{27}+1\) nên \(\frac{2^{25}+1}{2^{27}+1}< 1\)

\(\Rightarrow\frac{2^{25}+1}{2^{27}+1}< \frac{2^{25}+1+3}{2^{27}+1+3}=\frac{2^{25}+4}{2^{27}+4}=\frac{2^2\left(2^{23}+1\right)}{2^2\left(2^{25}+1\right)}=\frac{2^{23}+1}{2^{25}+1}\)

Vậy \(\frac{2^{25}+1}{2^{27}+1}< \frac{2^{23}+1}{2^{25}+1}\)

Bình luận (0)
TJ
Xem chi tiết
KT
Xem chi tiết
H24
27 tháng 7 2017 lúc 21:05

a.\(\frac{13}{15}< \frac{23}{25}\)

a.\(\frac{25}{18}>\frac{24}{27}\)

c.\(\frac{25}{78}< \frac{24}{27}\)

d.\(\frac{13}{15}< \frac{133}{153}\)

e.\(\frac{2003}{2004}+\frac{2004}{2005}< 2003+\frac{2004}{2004}+2003\)

Bình luận (0)
HL
27 tháng 7 2017 lúc 22:02

1.\(a,\)Ta có: \(1-\frac{13}{15}=\frac{2}{15};1-\frac{23}{25}=\frac{2}{25}\)

Mà \(\frac{2}{15}>\frac{2}{25}\)

Vì nếu cùng số bị trừ, số trừ càng lớn thì thương cang nhỏ và ngược lại. Do cùng bị 1 trừ nên \(\frac{13}{15}< \frac{23}{25}\)

\(b,\)Ta có: \(\frac{24}{27}=\frac{8}{9}=\frac{16}{18}\)

Mà \(\frac{25}{18}>\frac{16}{18}\)

Nên \(\frac{25}{18}>\frac{24}{27}\)

\(c,\)Ta có: \(\frac{24}{27}=\frac{8}{9}\)

Và \(\frac{25}{78}=\frac{25.9}{78.9};\frac{8}{9}=\frac{8.78}{9.78}\)

Mà \(25.9=25\left(8+1\right)=25.8+25< 8.78\)

Nên \(\frac{25}{78}< \frac{8}{9}=\frac{24}{27}\)

\(d,\)Ta có: \(1-\frac{13}{15}=\frac{2}{15}=\frac{20}{150}\)

\(1-\frac{133}{153}=\frac{20}{153}>\frac{20}{150}=\frac{2}{15}\)

Vì nếu cùng số bị trừ, số trừ càng lớn thì thương cang nhỏ và ngược lại. Do cùng bị 1 trừ nên \(\frac{133}{153}< \frac{13}{15}\)

2.        Ta có: \(\frac{2003+2004}{2004+2003}=\frac{2007}{2007}=1\)

Còn tiếp nữa thì bạn tự giải nha! chỉ cần so sánh 2003/2004+2004/2005 với 1 thôi!

Bình luận (0)
HL
27 tháng 7 2017 lúc 22:08

bài hai bạn có thể làm cách hai như sau:

Ta có: \(\frac{2003}{2004}>\frac{2003}{2007}=\frac{2003}{2004+2003};\frac{2004}{2005}>\frac{2004}{2007}=\frac{2004}{2004+2003}\)

Suy ra: \(\frac{2003}{2004}+\frac{2004}{2005}>\frac{2003}{2004+2003}+\frac{2004}{2004+2003}=\frac{2003+2004}{2004+2003}\)

Vậy: \(\frac{2003}{2004}+\frac{2004}{2005}>\frac{2003+2004}{2004+2003}\)

nhớ k cho mình nhé

Bình luận (0)