Những câu hỏi liên quan
TT
Xem chi tiết
LD
Xem chi tiết
TG
Xem chi tiết
LD
Xem chi tiết
TT
Xem chi tiết
NT
31 tháng 1 2017 lúc 21:39

Để \(n^2+2002\) là số chính phương thì \(n^2+2002=a^2\)(a là số tự nhiên khác 0)

\(\Rightarrow a^2-n^2=2002\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)

Do \(2002⋮2\)\(\Rightarrow\left(a-n\right)\left(a+n\right)⋮2\)hay \(a-n⋮2\)hoặc \(a+n⋮2\)hoặc \(\)a-n và a+n đều\(⋮2\)

mà a-n-(a+n)=-2n \(⋮2\)\(\Rightarrow\)a-n và a+n cùng chẵn hoặc lẻ \(\Rightarrow\) a-n; a+n đều \(⋮2\)\(\Rightarrow\)\(\left(a-n\right)\left(a+n\right)⋮4\)

Mà 2002 ko chia hết cho 4 \(\Rightarrow\)ko tồn tại n đẻ n^2+2002 là số chính phương

Bình luận (0)
BD
12 tháng 12 2018 lúc 12:05

đơngiản tự nghĩ lấy hỏi gì mà hỏi 

Bình luận (0)
H24
10 tháng 11 2020 lúc 16:37

lêu lêu

Bình luận (0)
 Khách vãng lai đã xóa
LL
Xem chi tiết
TN
Xem chi tiết
DL
Xem chi tiết
H24
17 tháng 3 2016 lúc 19:44

giả sư tồn tại n sao cho n2+2002 là số chính phương

Đặt n2+2002=m(m thuộc N )

=> m2-n= 2002 => (m+n)(m-n) = 2002 (bất đẳng thức)

vì m-n+m+n = 2m là một số chẵn; mặt khác 2002 chia hết cho 2

=> (m+n)(m-n) chia hết cho 4 mà 2002 không chia hết cho 4 nên không tồn tại n sao cho n2+2002 là số chính phương.

Bình luận (0)
DG
Xem chi tiết
HL
23 tháng 3 2019 lúc 22:04

ể n^2 +2002 là số chính phương 
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0) 
=> a^2 -n^2 =2002 
=> (a-n)(a+n) =2002 
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2 
mà a-n -(a+n) =-2n chia hết cho 2 
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2 
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4 
=> vô lý 

Bình luận (0)
H24
10 tháng 11 2020 lúc 16:37

làm siêu đúng luôn

Bình luận (0)
 Khách vãng lai đã xóa