Những câu hỏi liên quan
LH
Xem chi tiết
PT
10 tháng 11 2016 lúc 10:16

S tận cùng =0 nha bạn mình tính rồi đó lúc nãy mình bị lộn

bài 2 có cần tìm tận cung ko bạn

Bình luận (0)
H24
Xem chi tiết
NM
9 tháng 12 2021 lúc 14:34

\(a,S=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\\ S=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{18}\left(3+3^2\right)\\ S=\left(3+3^2\right)\left(1+3^2+...+3^{18}\right)=12\left(1+3^2+...+3^{18}\right)⋮12\)

\(b,S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\\ S=\left(3+3^2+3^3+3^4\right)+....+3^{16}\left(3+3^2+3^3+3^4\right)\\ S=\left(3+3^2+3^3+3^4\right)\left(1+...+3^{16}\right)\\ S=120\left(1+...+3^{16}\right)⋮120\)

Bình luận (0)
NT
9 tháng 12 2021 lúc 14:36

\(a,S=3+3^2+3^3+...+3^{20}\)

Ta thấy:\(3+3^2=12⋮12\)

\(\Rightarrow S=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{18}\left(3+3^2\right)\\ \Rightarrow S=\left(3+3^2\right)\left(1+3^2+...+1^{18}\right)\\ \Rightarrow S=12.\left(1+3^2+...+3^{18}\right)⋮12\\ \left(đpcm\right)\)

\(b,Ta\) \(thấy:\)\(3+3^2+3^3+3^4=120⋮120\)

\(\Rightarrow S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\\ \Rightarrow S=\left(3+3^2+3^3+3^4\right)+...+3^{16}\left(3+3^2+3^3+3^4\right)\\ \Rightarrow S=\left(3+3^2+3^3+3^4\right)\left(1+...+3^{16}\right)\\ \Rightarrow S=120\left(1+...+3^{16}\right)⋮120\\ \left(đpcm\right)\)

Bình luận (1)
NC
Xem chi tiết
HV
Xem chi tiết
BA
Xem chi tiết
NT
22 tháng 5 2016 lúc 9:59

đề bài sai

Bình luận (0)
OT
22 tháng 5 2016 lúc 9:52

Cách đơn giản nhất và lố nhất : 

Cộng tất cả vào rùi tìm S = bao nhiêu 

Rồi so sánh thôi , đã chứng tỏ

Bình luận (0)
VA
Xem chi tiết
VF
5 tháng 4 2024 lúc 20:03

Ta có: S = \(\dfrac{1}{3}+\dfrac{3}{3.7}+\dfrac{5}{3.7.11}+...+\dfrac{2n+1}{3.7.11...\left(4n+3\right)}\)

⇒ 2S = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+...+\dfrac{4n+2}{3.7.11...\left(4n+3\right)}\)

⇒ 2S + \(\dfrac{1}{3.7.11...\left(4n+3\right)}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+...+\dfrac{4n+3}{3.7.11...\left(4n+3\right)}\)

Đến đây nó sẽ rút gọn liên tục và sau nhiều lần rút gọn ta có:

2S + \(\dfrac{1}{3.7.11...\left(4n+3\right)}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+\dfrac{1}{3.7.11}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{11}{3.7.11}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{1}{3.7}\) = \(\dfrac{2}{3}+\dfrac{7}{3.7}=\dfrac{2}{3}+\dfrac{1}{3}=1\)

Suy ra 2S < 1 ⇒ S < \(\dfrac{1}{2}\)(đpcm)

Bình luận (0)
HA
Xem chi tiết
VK
Xem chi tiết
SM
9 tháng 9 2018 lúc 10:40

S = 5 + 52 + 53 + 54 + .......... + 599

a)  S = ( 5 + 52 + 53 ) + ( 54 + 55 + 56 ) + .... + ( 597 + 598 + 599 )

    = 5. ( 1 + 5 + 52 ) + 54 . ( 1 + 5 + 52 ) + .... + 597 . ( 1 + 5 + 52 )

     = ( 1 + 5 + 52 ). ( 5 + 54 + .. + 597 )

      = 31 . ( 5 + 54 + .... + 597 ) chia hết cho 31 ( đpcm )

c ) 5S = 52 + 53 + .. + 5100

=> 5S - S = 4S = 5100 + 599 + ........ + 53 + 52 - 5 - 52 - 53 - ..... - 599

                         = 5100 - 5 

25x - 5 = 4S

=> 25x - 5 = 5100 - 5

=> 25x = 5100

=> 25x = ( 52 )50

=> 25x = 2550

=> x = 50

Vậy  x = 50

Câu b quên cách làm rồi     

Bình luận (0)
H24
9 tháng 9 2018 lúc 11:21

a) S=5+52+53+54+...+599

=(5+52+53)+(54+55+56)+...+(597+598+599)

=5(1+5+52)+54(1+5+52)+...+597(1+5+52)

=5.31+54.31+...+597.31

=31(5+54+...+597)⋮31(đpcm)

b) S=5+52+53+54+...+599

=5+(52+53)+(54+55)+...+(598+599)

=5+5(5+52)+53(5+52)+...+597(5+52)

=5+5.30+53.30+...+597.30

=5+30.(5+53+...+597)

Mà 5⋮̸30 nên S⋮̸30(đpcm)

c) Ta có: 5S=52+53+54+55+...+5100

5SS=(52+53+54+55+...+5100)−(5+52+53+54+...+599)

4S=5100−5

⇒25x−5=5100−5

⇒25x=5100

⇒25x=2550

x=50

Bình luận (0)

có cái báo cáo rồi

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết