Những câu hỏi liên quan
NL
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
TQ
Xem chi tiết
SL
Xem chi tiết
SL
Xem chi tiết
SL
Xem chi tiết
MC
Xem chi tiết
AN
17 tháng 7 2018 lúc 16:09

\(3x^2+6y^2+2z^2+3y^2z^2-18x=6\)

\(\Leftrightarrow3\left(x-3\right)^2+6y^2+2z^2+3y^2z^2=33\)

\(\Rightarrow3\left(x-3\right)^2\le33\)

\(\Leftrightarrow\left(x-3\right)^2\le11\)

\(\Leftrightarrow\left(x-3\right)^2=\left\{0;1;4;9\right\}\)

Thế lần lược vô giải tiếp sẽ ra

Bình luận (0)
AN
17 tháng 7 2018 lúc 16:17

Áp dụng với 6y^2 thì còn ngắn hơn nữa

Bình luận (0)
BP
Xem chi tiết
H24
15 tháng 4 2019 lúc 10:16

Dễ thấy \(z^2\)chia hết cho 3 \(\Rightarrow z⋮3\Rightarrow z^2⋮9\)

* Xét \(z^2=0\), ta có \(3x^2+6y^2-18x-6=0\)

                   \(\Leftrightarrow3\left(x-3\right)^2+6y^2=33\Leftrightarrow\left(x-3\right)^2+2y^2=11\)

\(2y^2\le11\Rightarrow y^2\le2^2\Rightarrow y^2=0^2;1^2;2^2\)

\(+y^2=0^2\Rightarrow\left(x-3\right)^2=11\)(vô lí)

\(+y^2=1^2\Rightarrow\left(x-3\right)^2=3^2\Rightarrow x-3=\pm3\)

                    \(\Rightarrow x=6\)hoặc \(x=0\)

Có các nghiệm \(\left(x=6;y=1;z=0\right)\)          \(\left(x=6;y=-1;z=0\right)\)

                          \(\left(x=0;y=1;z=0\right)\)          \(\left(x=0;y=-1;z=0\right)\)

\(+y^2=2^2\Rightarrow\left(x-3\right)^2=3\)( vô lí)

* Xét \(z^2\ge9\) ta có: \(3x^2+6y^2+2z^2+3y^2z^2-18x-6=0\)

                \(\Leftrightarrow3\left(x-3\right)^2+6y^2+2z^2+3y^2z^2=33\)

\(+y^2\ge1\)thì \(2z^2+3y^2z^2\ge2.9+3.1.9>33\)(loại)

\(+y^2=0\)thì \(3\left(x-3\right)^2+2z=33\)

    \(z^2=9\)thì \(3\left(x-3\right)^2=15\)(loại)

\(z^2>9\Rightarrow z^2\ge6^2=36\)

Ta có  \(3\left(x-3\right)^2+2z^2>33\)(loại)

Nghiệm nguyên của ptrình là: 

\(\left(x=6;y=1;z=0\right)\)           \(\left(x=6;y=-1;z=0\right)\)

\(\left(x=0;y=1;z=0\right)\)          \(\left(x=0;y=-1;z=0\right)\)

Bình luận (0)