Tìm x,y,z biết:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và 2x2 + 3y2 - 5z2 = -405
1. Tìm \(x,\:y,\:z\:\) biết:
\(\frac{x}{3}=\frac{y}{4};\:\frac{y}{3}=\frac{z}{5}\) và
2x\(-3y+z=6\)
2. Tìm x,y biết:
5x=2y và x.y=40
Bài 1: Tìm x, y, z
\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{3\times3}=\frac{y}{4\times3}=>\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{5}=>\frac{y}{3.4}=\frac{z}{5.4}=>\frac{y}{12}=\frac{z}{20}\)
=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) -> \(\frac{2x}{2\times9}=\frac{3y}{3\times12}=\frac{z}{20}\) -> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)
-> \(\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\frac{x}{9}=3\rightarrow x=27\)
\(\frac{y}{12}=3\rightarrow y=36\)
\(\frac{z}{20}=3\rightarrow z=60\)
Vậy x = 27 ; y = 36 ; z = 60
Bài 2 : Tìm x, y:
5x = 2y và x.y = 40
Vì 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\)
Cách 1:
\(\frac{x}{2}=\frac{y}{5}\) và x.y = 40
Đặt \(\frac{x}{2}=\frac{y}{5}\) = k
=> x = 2.k ; y = 5.k
x.y = 40 -> 2k = 5k = 40
-> 10 . \(k^2\) = 40
-> \(k^2\) = 4 -> k = 2 hoặc k = -2
k = 4 ta có : \(\frac{x}{2}=\frac{y}{5}=2->x=4;y=10\)
k = -4 ta có : \(\frac{x}{2}=\frac{y}{5}=-2->x=-4;y=-10\)
Cách 2:
\(\frac{x}{2}=\frac{y}{5}->\frac{x.x}{2}=\frac{x.y}{5}->\frac{x^2}{2}=\frac{40}{5}=\frac{x^2}{2}=8\)
=> \(x^2\) = 8 . 2 = 16 -> x = 4 hoặc -4
x = 4 -> 4.y = 40 => y = 10
x = -4 -> (-4).y = 40 => y = -10
Vậy x = 4 hoặc -4
y = 10 hoặc -10
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1),(2) suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{-3y}{-36}=\frac{z}{15}=\frac{2x-3y+z}{18-\left(-36\right)+15}=\frac{6}{69}=\frac{2}{23}\)Suy ra x =\(\frac{2}{23}\cdot9=\frac{18}{23}\)
\(y=\frac{2}{23}\cdot12=\frac{24}{23}\\ z=\frac{2}{23}.15=\frac{30}{23}\)
\(1.\)
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\) \(\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\) \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\frac{x}{9}=3\Rightarrow x=3.9=27\)
\(\frac{y}{12}=3\Rightarrow y=3.12=36\)
\(\frac{z}{20}=3\Rightarrow z=3.20=60\)
Vậy x = 27; y = 36 và z = 60
tìm x, y, z biết:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2 x x + 3 x y - z= 50
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)}{2.2}=\frac{3\left(y-2\right)}{3.3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=k\)
Áp dụng TC DTSBN ta có :
\(k=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{\left(2x+3y-z\right)-5}{9}=\frac{50-5}{9}=5\)
\(\Rightarrow x-1=10;y-2=15;z-3=20\)
\(\Rightarrow x=11;y=17;z=23\)
Tìm x,y,z biết :
\(\frac{3x}{4}=\frac{5}{y}=\frac{6z}{11}\) và X-Y+Z= -262
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{10}\)và x+y+z=1080
tìm x,y,z biết\(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}\)và x.y=48
ta có \(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}\)và x.y=48
xét \(\frac{x}{3}=\frac{y}{4}\)
đặt K vào \(\frac{x}{3}=\frac{y}{4}\)
ta có
\(\frac{x}{3}=K\Rightarrow x=3K\)
\(\frac{y}{4}=K\Rightarrow y=4K\)
\(x.y=48\)
\(3K.4K=48\)
\(12K^2=48\)
\(K^2=48:12=4\)
\(K^2=2^2\Rightarrow K=2\)
*\(\frac{x}{3}=2\Rightarrow x=2.3=6\)
*\(\frac{y}{4}=2\Rightarrow y=2.4=8\)
*\(\frac{z}{7}=2\Rightarrow z=2.7=14\)
vậy \(x=6;y=8;z=14\)
dat \(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}=k\) => x=3k,y=4k,z=7k
Thay vvao ta dc: x.y=48
3k.4k=48
12.\(k^2\)=48
k^2=4
k=4,-4
TH1: k=a
=> x=3k=>x=12
y va z lam tuong tu nhe
Con TH2 la -4
k cho m nha
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}\)Và \(x\cdot y=48\)
Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}=K\)
\(\Rightarrow\frac{x}{3}=K\Rightarrow x=3K\)
\(\Rightarrow\frac{y}{4}=K\Rightarrow y=4K\)
\(\Rightarrow\frac{z}{7}=K\Rightarrow z=7K\)
Mà \(x\cdot y=48\)
\(\Rightarrow3K\cdot4k=48\)
\(\Rightarrow12K^2=48\)
\(\Rightarrow K^2=4\)
\(\Rightarrow K=2\)
Khi đó: \(\Rightarrow\frac{x}{3}=2\Rightarrow x=6\)
\(\Rightarrow\frac{y}{4}=2\Rightarrow y=8\)
\(\Rightarrow\frac{z}{7}=2\Rightarrow z=14\)
Vậy x=3;y=8 và z=14
TÌM 3 SỐ X,Y,Z BIẾT
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}\) và \(x+y+z=18\)
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{x+3}{5}=\frac{x+y+z+1+2+3}{3+4+5}=\frac{24}{12}=2\)
\(\Rightarrow\)\(\frac{x+1}{3}=2\Rightarrow x=5\)
\(\frac{y+2}{4}=2\Rightarrow y=6\)
\(\frac{z+3}{5}=2\Rightarrow z=7\)
Vậy bạn tự kết luận nha
tìm 3 số x,y,z biết rằng:
\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}\) và x+y-z=10
ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
ADTCDTSBN
có: \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\frac{x}{8}=2\Rightarrow x=16\)
y/12 = 2 => y = 24
z/15 = 2 => z = 30
KL: x = 16; y=24;z=30
Ta có :
\(\frac{x}{2}=\frac{y}{3}\)\(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\)\(\Rightarrow\)\(\frac{y}{12}=\frac{z}{15}\)
Suy ra : \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
Do đó :
\(\frac{x}{8}=2\)\(\Rightarrow\)\(x=2.8=16\)
\(\frac{y}{12}=2\)\(\Rightarrow\)\(y=2.12=24\)
\(\frac{z}{15}=2\)\(\Rightarrow\)\(z=2.15=30\)
Vậy \(x=16\)\(;\)\(y=24\) và \(z=30\)
Chúc bạn học tốt ~
Ta có: \(\orbr{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}\Rightarrow\orbr{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}\Rightarrow}\frac{x}{8}=\frac{y}{12}=\frac{z}{15}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{13}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\) \(\frac{x}{8}=2\Rightarrow x=16\)
\(\frac{y}{12}=2\Rightarrow y=24\)
\(\frac{z}{15}=2\Rightarrow z=30\)
KL:................
bài 6 . tìm 3 số x, y,z,biết rằng
\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}\)và x + Y - Z = 10
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}\)
Tìm x,y,x biết:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{7}=\frac{z}{4}\)và x+y-z=69
Ai nhanh mik tick ba cái nè
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{14}=\frac{y}{21}\)
\(\frac{y}{7}=\frac{z}{4}\Rightarrow\frac{y}{21}=\frac{z}{12}\)
\(\Leftrightarrow\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)
\(\Rightarrow x=52;y=63;z=36\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{7}=\frac{z}{4}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{14}=\frac{y}{21}\\\frac{y}{21}=\frac{z}{12}\end{cases}\Rightarrow}\frac{x}{14}=\frac{y}{21}=\frac{z}{12}}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)
\(\Rightarrow\hept{\begin{cases}x=3.14=42\\y=3.21=63\\z=3.12=36\end{cases}}\)
Ta có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{7}=\frac{z}{4}\)
=> \(\frac{x}{14}=\frac{y}{21};\frac{y}{21}=\frac{z}{12}\)
=> \(\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)
Từ trên ta có:
\(\frac{x}{14}=3=>x=3.14=42\)
\(\frac{y}{21}=3=>y=3.21=63\)
\(\frac{z}{12}=3=>z=3.12=36\)
Vậy x = 42
y = 63
z = 36
ỦNG HỘ NHA
Tìm các số x,y,z biết rằng
a)\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và 2x+3y-z=50
b)\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz= 810
a) Ta có \(\frac{x-1}{2}\)\(=\)\(\frac{y-2}{3}\)\(=\)\(\frac{z-3}{4}\)\(=\)\(\frac{2x-2}{4}\)\(=\)\(\frac{3y-6}{9}\)\(=\)\(\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\)\(=\)\(\frac{\left(2x+3y-z\right)-5}{9}\)\(=\)\(\frac{50-5}{9}\)\(=\)5 Do đó x \(=\)5\(\times\)2\(+\)1\(=\)11 y\(=\)5\(\times\)3\(+\)2\(=\)17 z\(=\)5\(\times\)4\(+\)3\(=\)23