So sánh A=n/n+1+n+1/n+2 B=2n+1/2n+3
So sánh A và B biết
A= n/n+1 + n+1/n+2 ; B= 2n+1/ 2n+3
A=nn+1+n+1n+2>nn+2+n+1n+2A=nn+1+n+1n+2>nn+2+n+1n+2
=2n+1n+2>2n+12n+3=2n+1n+2>2n+12n+3
VẬY A>B
Chúc bạn học tốt ( -_- )
So sánh: A = n/n+1 + n+1/n+2; B = 2n+1/2n+3 với n là số tự nhiên khác 0
So sánh A va B
A= n/n+1 + n+1/n+2
B= 2n+1/2n+3
Help me vs~~~
Cho n ϵ N* . Hãy so sánh biểu thức A và B biết :
A= n/ n+1 + n+1/ n+2
B = 2n+1/ 2n+3
Lời giải:
\(A=\frac{n}{n+1}+\frac{n+1}{n+2}=\frac{n(n+2)+(n+1)^2}{(n+1)(n+2)}=\frac{2n^2+4n+2}{n^2+3n+2}>1\) do $2n^2+4n+2> n^2+3n+2$ với mọi $n\in\mathbb{N}^*$
$B=\frac{2n+1}{2n+3}< 1$ do $2n+1< 2n+3$
Do đó $A>B$
So sánh hai phân số sau:
n/n+1 + n+1/n+2 và 2n+1/2n+3
Với n thuộc N số sánh
a: n/ 2n+3 và n+2/2n+1
b: n/ 3n+1 và 2n/6n+1
a) Ta có : n / 2n + 3 < n + 2 / 2n + 3 + 2
= n + 2 / 2n + 5
Mà n + 2 / 2n + 5 < n + 2 / 2n + 1
=> n / 2n + 3 < [ n + 2 / 2n + 5 ] < n + 2 / 2n + 1
Vậy n / 2n + 3 < n + 2 / 2n + 1
b) Ta có : n / 3n + 1 = 2n / 6n + 2
Mà 2n / 6n + 2 < 2n / 6n + 1
Vậy n / 3n + 1 < 2n / 6n + 1
Bài 1:
a. (n+4)⋮(n-1)
b. (n\(^2\)+2n-3)⋮(n+1)
c. (3n-1)⋮(n-2)
d. (3n+1)⋮(2n-1)
Bài 2:
Cho A = 7+7\(^2\)+7\(^3\)+....+7\(^{36}\)
a) A là số chẵn hay lẻ?
b) Chứng minh rằng: A⋮3: A⋮8 và A⋮19
c) Tìm chữ số tận cùng của A
Bài 3.So sánh:
a) 2\(^{248}\) và 3\(^{155}\)
b) 202\(^{303}\) và 303\(^{202}\)
c) 222\(^{777}\) và 777\(^{222}\)
Bài 1:
a; (n + 4) \(⋮\) ( n - 1) đk n ≠ 1
n - 1 + 5 ⋮ n - 1
5 ⋮ n - 1
n - 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) { -4; 0; 2; 6}
Bài 1 b; (n2 + 2n - 3) \(⋮\) (n + 1) đk n ≠ -1
n2 + 2n + 1 - 4 ⋮ n + 1
(n + 1)2 - 4 ⋮ n + 1
4 ⋮ n + 1
n + 1 \(\in\) Ư(4) = {-4; -2; -1; 1; 2; 4}
n \(\in\) {-5; -3; -2; 0; 1; 3}
Bài 1 c: 3n - 1 \(⋮\) n - 2
3n - 6 + 5 \(⋮\) n - 2
3.( n - 2) + 5 ⋮ n - 2
5 ⋮ n - 2
n - 2 \(\in\) Ư(5) = {- 5; -1; 1; 5}
n \(\in\) {-3; 1; 3; 7}
Bài 1 : So sánh 2 biểu thức A và B,biết rằng :\(A=\frac{N}{N+1}+\frac{N+1}{N+2}\)
\(B=\frac{2n+1}{2n+3}\left(n\in Nsao\right)\)
(Giai = 2 cách)
Cách 1 :
Ta có : \(\frac{n}{n+1}>\frac{n}{2n+3}\left(1\right)\)
\(\frac{n+1}{n+2}>\frac{n+1}{2n+3}\left(2\right)\)
Cộng theo từng vế ( 1) và ( 2 ) ta được :
\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{2n+1}{2n+3}=B\)
VẬY \(A>B\)
CÁCH 2
\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{n}{n+2}+\frac{n+1}{n+2}\)
\(=\frac{2n+1}{n+2}>\frac{2n+1}{2n+3}\)
VẬY A>B
Chúc bạn học tốt ( -_- )
So sánh : a)n/n+1 và n+1/n+2 b) n/n+3 và n-1/n+4 c) n/2n+1 và 3n+1/6n+3
cho tớ l i k e trước nhé rồi tớ sẽ trả lời
Ta có: \(\frac{n}{n+1}=\frac{n\times n+2}{n+1\times n+2}\)
\(\frac{n+1}{n+2}=\frac{n+1\times n+1}{n+2\times n+1}=\frac{n\times2}{n\times3}\)
=> n + 1/ n + 2 > n/n+1
a, n/n+1 va n+1/n+2
Có n/n+1 + 1/n+1=1
n+1/n+2 + 1/n+2 = 1
Vì 1/n+1>1/n+2 nên n/n+1<n/n+2 ( Bài này so sanh theo phần bù đơn vị)
c, n/2n+1 va 3n+1/6n+3
Có n/2n+1 = 3n/3.(2n+1) = 3n/6n+3
Vì 3n/6n+3 < 3n+1/6n+3 nên n/2n+1<3n+1/6n+3