Tìm n thuộc N biết
N+9 chia hết cho n+2
Bài 1 : Tìm tổng các số tự nhiên n , biết rằng 18 chia hết cho n
Bài 2 : Tìm rất cả n thuộc N , biết :
a: 12 chia hết cho n + 3
b: n + 9 chia hết cho n
c: n + 13 chia hết cho n+2
1. Vì 18 chia hết cho n => n thuộc Ư(18)={1,2,3,6,9,18)
=> Tổng các Ư(18) = 1 + 2 +3 + 6 + 9 + 18 = 33
2.a) 12 chia hết cho n+3 => n + 3 thuộc Ư(12) = {1;2;3;4;6;12}
Với n + 3 = 1 => n = 1 - 3 = -2 (loại vì không thuộc N)
Với n + 3 = 2 => n = 2 - 3 = -1 (loại vì không thuộc N)
Với n + 3 = 3 => n = 3 - 3 = 0
Với n + 3 = 4 => n = 4 - 3 = 1
Với n + 3 = 6 => n = 6 - 3 = 3
Với n + 3 =12 => n = 12 - 3 = 9
Vậy n thuộc {0;1;3;9}
c) Nếu n là số chẵn thì n + 13 là số lẻ, n + 2 là số chắn và ngược lại
Vì SC không chia hết cho SL (và ngược lại) => n + 13 không chia hết cho n + 2 (ngược lại nốt)
Vậy không tồn tại giá trị nào của x (chắc thế)
Bài 1 :
\(18⋮n\Rightarrow n\inƯ\left(18\right)=\left\{1;2;3;6;9;18\right\}\)
bài 2 :
\(a,12⋮n+3\)
\(\Rightarrow n+3\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
\(\Rightarrow n=\left\{-2;-1;0;1;3;9\right\}\)mà \(n\in N\)
\(\Rightarrow n=\left\{0;1;3;9\right\}\)
b,c tương tự như vậy nha
\(\frac{n^2+4n+9}{n+3}=\frac{n^2+4n+3+6}{n+3}=\frac{\left(n+1\right)\left(n+3\right)+6}{n+3}=n+1+\frac{6}{n+3}\)
Vì n thuộc N
=> n+1 thuộc N
Để \(\frac{n^2+4n+9}{n+3}\) chia hết cho n + 3 thì \(6⋮n+3\)
Hay n+3 thuộc Ư(6)={1;-1;2;-2;3;-3;6;-6}
Bạn làm nốt nhá
tìm n thuộc N biết
a) n+6 chia hết cho n+3
b)2n+9 chia hết cho n+2'
c)2n+7 chia hết cho n+1
d) n+3 chia hết cho n-1
\(a,n+6⋮n+3\)
\(\Rightarrow n+3+3⋮n+3\)
mà \(n+3⋮n+3\Rightarrow3⋮n+3\)
\(\Rightarrow n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Với n + 3 = 1 => n = -2
n + 3 = -1 => n = -4
n +3 = 3 = > n= 0
n+ 3 = -3 => n= -6
\(\Rightarrow n\in\left\{-2;-4;0;-6\right\}\)
b, \(2n+9⋮n+2\)
\(2.n+2+7⋮n+2\)
mà \(2\left(n+2\right)⋮n+2\)
\(\Rightarrow7⋮n+2\Rightarrow n+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
........
bn lm như trên
\(c,2n+7⋮n+1\)
\(\Rightarrow2n+1+6⋮n+1\)
mà \(2.\left(n+1\right)⋮n+1\Rightarrow6⋮n+1\)
\(\Rightarrow n+1\inƯ\left(6\right)=\left\{1;-1;2;-2;6;-6\right\}\)
........ như phần vừa nãy
\(d,n+3⋮n-1\)
\(\Rightarrow n+4-1⋮n-1\)
\(\Rightarrow n-1+4\)
mà \(n-1⋮n-1\Rightarrow4⋮n-1\)
\(\Rightarrow n\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
......
Tìm n thuộc N* biết 2016n^2+ 2016n+9 chia hết cho n+1
tìm n thuộc N biết:
(3n + 9) chia hết cho (n - 2)
3n+9 \(⋮n-2\)
=>3(n-2)+15\(⋮n-2\)
=> 15 \(⋮n-2\)
=> \(n-2\inƯ\left(15\right)=\left\{\pm1\pm3\pm5\pm15\right\}\)
=> \(n\in\left\{3,1,5,0,7,-3,17,-13\right\}\)
(3n+9) chia hết cho (n-2)
mà n-2 chia hết cho n-2 nên 3. ( n-2) chia hết cho n-2
suy ra 3x+9 - 3n + 6 chia hết cho n-2
suy ra 15 chia hết cho n-2
n - 2 thuộc {1;-1;3;-3;5;-5;15;-15}
n thuộc {3;1;5;7;17} vì n thuộc N
Ta có: \(3n+9⋮n-2\Leftrightarrow3\left(n-2\right)+15⋮n-2\Leftrightarrow15⋮n-2\Leftrightarrow n-2\inƯ\left(15\right)\)
mà \(n\in N\Rightarrow n-2\ge-2\Rightarrow n-2\in\left\{-1,1,3,5,15\right\}\Leftrightarrow n\in\left\{1,3,5,7,17\right\}\)
Vậy \(n\in\left\{1,3,5,7,17\right\}\)
1. tìm n thuộc N biết 347 chia cho n dư 7 và 639 chia cho n dư 9
2.Cho a,b thuộc N; a+4b chia hết cho 13. Giải thích 10a + b chia hết cho 13
1 tìm n thuộc z biết
a, 7 chia hết n-2
2 tìm n thuộc z biết
a, 2n+5 chia hết cho n-1
b, n+3 chia hết cho 2n -1
3 tìm n thuộc z biết
a, 2n-5 chia hết cho n+1 và n+1 chia hết cho 2n+5
b, 3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2
tìm n thuộc N biết
a , (3n+6)chia hết cho n
b, (5n-5)chia hết cho n
c, (3n+9)chia hết cho (n+2)
d, (4n+8)chia hết (n-2)
e, (3n+8)chia hết (2n+1)
a, 3n + 6 chia hết cho n
vì 3n chia hết cho n => để 3n + 6 chia hết cho n thì 6 phải chia hết cho n
=>n ЄƯ {1;2;3;6} vậy n = 1 ; 6 ;2;3
b, (5n-5)chia hết cho n
vì 5n chia hết cho n => để 5n - 5 chia hết cho n thì 5 phải chia hết cho n
=>n Є {1;5} vậy n = 1 ; 5
Để mk làm tiếp mấy bài còn lại nhé!
c) ta có: 3n + 9 chia hết cho n + 2
=> 3n + 6 + 3 chia hết cho n + 2
3.(n+2) + 3 chia hết cho n + 2
mà 3.(n+2) chia hết cho n + 2
=> 3 chia hết cho n + 2
...
bn tự làm tiếp nhé!
d) ta có: 4n + 8 chia hết cho n - 2
=> 4n - 8 + 16 chia hết cho n - 2
4.(n-2) + 16 chia hết cho n - 2
mà 4.(n-2) chia hết cho n - 2
=> 16 chia hết cho n - 2
...
e) ta có: 3n + 8 chia hết cho 2n + 1
=> 2.(3n+8) chia hết cho 2n + 1
6n + 16 chia hết cho 2n + 1
6n + 3 + 13 chia hết cho 2n + 1
3.(2n+1) + 13 chia hết cho 2n + 1
mà 3.(2n+1) chia hết cho 2n + 1
=> 13 chia hết cho 2n + 1
...
tìm X thuộc Z biết
a, (n-9) chia hết cho (n-3)
b,(n mũ 2+ 5n+ 7) chia hết cho (n+5)