cho S = 1.2.3 + 2.3.4 + 3.4.5 +........+2015.2016.2017 cm 4S la so cp
cho S=1.2.3 + 2.3.4 +3.4.5 +...........+2015.2016.2017 cm 4S la so cp
S=1.2.3+2.3.4+3.4.5+.......+48.49.50.Chung minh 4s+1 la so chinh phuong
S=1.2.3+2.3.4+3.4.5+...+49.50.51
hoi so tu nhien n nho nhat de 4S+n la so chinh phuong
Cho : A= 3/1.2.3+3/2.3.4+3/3.4.5+.....+3/2015.2016.2017 so sánh A với1
Giúp mk với nhé!
\(A=\frac{3}{1.2.3}+\frac{3}{2.3.4}+\frac{3}{3.4.5}+...+\frac{3}{2015.2016.2017}\)
\(A=\frac{3}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{3}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+\frac{3}{2}.\left(\frac{1}{3.4}-\frac{1}{4.5}\right)+...+\frac{3}{2}.\left(\frac{1}{2015.2016}-\frac{1}{2016.2017}\right)\)
\(A=\frac{3}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2015.2016}-\frac{1}{2016.2017}\right)\)
\(A=\frac{3}{2}.\left(\frac{1}{1.2}-\frac{1}{2016.2017}\right)\)
\(A=\frac{3}{4}-\frac{3}{2.2016.2017}< 1\)
cho S=1.2.3+2.3.4+3.4.5+....+ 9.10.11 chứng minh 4S + 1 luôn là số chính phương
1, Tính giá trị biểu thức
N= 1.2.3+2.3.4+3.4.5+4.5.6+...+2015.2016.2017
4N = 1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 2015.2016.2017.(2018-2014)
4N = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 2015.2016.2017.2018 - 2014.2015.2016.2017
4N = (1.2.3.4 + 2.3.4.5 + 3.4.5.6 + ... + 2015.2016.2017.2018) - (0.1.2.3 + 1.2.3.4 + 2.3.4.5 + ... + 2014.2015.2016.2017)
4N = 2015.2016.2017.2018 - 0.1.2.3
4N = 2015.2016.2017.2018
N = 2015.2016.504.2018 (kq hơi to nên bn tự tính nhé)
cho S = 1.2.3 + 2.3.4 +3.4.5 +...+ K ( k + 1) (k + 2) (voi k thuoc N* )
chung minh rang 4S + 1 la xo chinh phuong
Cho \(S=1.2.3+2.3.4+3.4.5+.....+9.10.11\)
Chứng minh rằng \(4S+1\) luôn là số chính phương
Ta có \(k\left(k+1\right)\left(k+2\right)=\dfrac{1}{4}k\left(k+1\right)\left(k+2\right)\cdot4\)
\(=\dfrac{1}{4}k\left(k+1\right)\left(k+2\right)\left[\left(k+3\right)-\left(k-1\right)\right]\\ =\dfrac{1}{4}k\left(k+1\right)\left(k+2\right)\left(k+3\right)-\dfrac{1}{4}\left(k-1\right)k\left(k+1\right)\left(k+2\right)\)
Từ đó ta được \(S=\dfrac{1}{4}\cdot1\cdot2\cdot3\cdot4-\dfrac{1}{4}\cdot0\cdot1\cdot2\cdot3+...+\dfrac{1}{4}\cdot9\cdot10\cdot11\cdot12-\dfrac{1}{4}\cdot8\cdot9\cdot10\cdot11\\ \Leftrightarrow S=\dfrac{1}{4}\cdot9\cdot10\cdot11\cdot12\\ \Leftrightarrow4S+1=9\cdot10\cdot11\cdot12+1=11881=109^2\left(đpcm\right)\)
cho S=1.2.3+2.3.4+3.4.5+....+ 9.10.11 chứng minh 4S + 1 luôn là số chính phương
\(S=1.2.3+2.3.4+3.4.5+...+9.10.11\)
\(4S=1.2.3.4+2.3.4.\left(5-1\right)+3.4.5.\left(6-2\right)+...+9.10.11.\left(12-8\right)\)
\(=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+9.10.11.12-8.9.10.11\)
\(=9.10.11.12\)
\(4S+1=9.10.11.12+1=\left(9.12\right).\left(10.11\right)+1=108.110+1\)
\(=\left(109-1\right)\left(109+1\right)+1=109^2-1+1=109^2\)
Ta có đpcm.
Ta có \(k\left(k+1\right)\left(k+2\right)=\dfrac{1}{4}k\left(k+1\right)\left(k+2\right)\cdot4\)
\(=\dfrac{1}{4}k\left(k+1\right)\left(k+2\right)\left[\left(k+3\right)-\left(k-1\right)\right]\\ =\dfrac{1}{4}k\left(k+1\right)\left(k+2\right)\left(k+3\right)-\dfrac{1}{4}\left(k-1\right)k\left(k+1\right)\left(k+2\right)\)
Từ đó ta được \(S=\dfrac{1}{4}\cdot1\cdot2\cdot3\cdot4-\dfrac{1}{4}\cdot0\cdot1\cdot2\cdot3+...+\dfrac{1}{4}\cdot9\cdot10\cdot11\cdot12-\dfrac{1}{4}\cdot8\cdot9\cdot10\cdot11\\ \Leftrightarrow S=\dfrac{1}{4}\cdot9\cdot10\cdot11\cdot12\\ \Leftrightarrow4S+1=9\cdot10\cdot11\cdot12+1=11881=109^2\left(đpcm\right)\)