Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
AN
Xem chi tiết
TN
Xem chi tiết
NC
Xem chi tiết
AH
3 tháng 2 2023 lúc 23:45

Lời giải:
Áp dụng BĐT Cô-si:

$\frac{1}{x(x+1)}+\frac{x}{2}+\frac{x+1}{4}\geq 3\sqrt[3]{\frac{1}{x(x+1)}.\frac{x}{2}.\frac{x+1}{4}}=\frac{3}{2}$

Tương tự:

$\frac{1}{y(y+1)}+\frac{y}{2}+\frac{y+1}{4}\geq \frac{3}{2}$

$\frac{1}{z(z+1)}+\frac{z}{2}+\frac{z+1}{4}\geq \frac{3}{2}$

Cộng theo vế các BĐT trên:

$\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{3}{4}(x+y+z)+\frac{3}{4}\geq \frac{9}{2}$

$\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{9}{4}+\frac{3}{4}\geq \frac{9}{2}$

$\Rightarrow \frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\geq \frac{3}{2}$ 

Vậy gtnn của biểu thức là $\frac{3}{2}$ khi $x=y=z=1$

Bình luận (0)
DT
Xem chi tiết
DH
20 tháng 3 2017 lúc 15:27

Ta có :

\(x^2+y^2\ge2xy\)

\(y^2+z^2\ge2yz\)

\(z^2+x^2\ge2zx\)

\(x^2+1\ge2x\)

\(y^2+1\ge2y\)

\(z^2+1\ge2z\)

Suy ra :  \(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+zx\right)\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge2.6=12\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge9\)

\(\Leftrightarrow x^2+y^2+z^2\ge3\)

Dấu ''='' xảy ra khi x=y=z=1

Vậy GTNN của  \(x^2+y^2+z^2\)là 3 khi x=y=z=1

Bình luận (0)
NH
Xem chi tiết
VL
Xem chi tiết
H24
Xem chi tiết
TN
22 tháng 6 2017 lúc 19:49

Ờ thì AM-GM (là Cô si ko âm đây)

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}\cdot\frac{y+z}{4}}=2\cdot\frac{x}{2}=x\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y;\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)

Cộng theo vế 3 BĐT trên ta có:

\(P+\frac{2\left(x+y+z\right)}{4}\ge x+y+z\Leftrightarrow P\ge1\)

ĐẲng thức xảy ra khi \(x=y=z=\frac{2}{3}\)

Bình luận (0)
DH
21 tháng 6 2017 lúc 13:59

Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :

\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{2}{3}\)

Vậy \(P_{min}=1\) tại \(x=y=z=\frac{2}{3}\)

Bình luận (0)
H24
21 tháng 6 2017 lúc 19:41

Đinh Đức Hùng ơi, cái cauchy-schwars dưới dạng engel mình chưa học, mới học cái bđt cauchy a+b >= căn ab với a,b ko âm thoy à

Bình luận (0)
NQ
Xem chi tiết
LC
15 tháng 2 2020 lúc 10:15

Áp dụng bđt AM-GM ta có:

\(\frac{x^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{x^2}{x+y}.\frac{x+y}{4}}=x\)

\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge2\sqrt{\frac{y^2}{x+z}.\frac{x+z}{4}}\ge y\)

\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{z^2}{x+y}.\frac{x+y}{4}}\ge z\)

Cộng từng vế các bđt trên ta được:

\(P+\frac{x+y+z}{2}\ge x+y+z\)

\(\Rightarrow P\ge\frac{x+y+z}{2}=1\)

Dấu"="xảy ra \(\Leftrightarrow x=y=z=1\)

Vậy Min P=1 \(\Leftrightarrow x=y=z=1\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
15 tháng 2 2020 lúc 10:26

anh Châu ơi, 1+1+1 đâu có = 2 anh.

Bình luận (0)
 Khách vãng lai đã xóa
LC
15 tháng 2 2020 lúc 10:27

à anh xl nhầm x=y=z=\(\frac{2}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
PH
Xem chi tiết