tính giới hạn của dãy số sau
Tính giới hạn của các dãy số có số hạng tổng quát sau đây, khi n → + ∞ u n = 2 n + 1 n
Tính giới hạn của các dãy số có số hạng tổng quát sau đây, khi n → + ∞ v n = - 2 π n + 3 n 4 n
l i m v n = l i m - 2 π n + 3 n 4 n = 0
Tính giới hạn của các dãy số có số hạng tổng quát sau đây, khi n → + ∞ c n = 2 n n n 2 + 2 n - 1
l i m c n = l i m 2 n n n 2 + 2 n - 1 = 0
Tính giới hạn của các dãy số có số hạng tổng quát sau đây, khi n → + ∞ a n = 2 n - 3 n 2 + 1 n 3 + n 1
l i m a n = l i m 2 n - 3 n 2 + 1 n 3 + n 1 = - 3
Tính giới hạn của các dãy số có số hạng tổng quát sau đây, khi n → + ∞ u n = 3 n - 4 n + 1 2 . 4 n + 2 n
l i m u n = l i m 3 n - 4 n + 1 2 . 4 n + 2 n = - 1 2
Tính giới hạn của các dãy số có số hạng tổng quát sau đây, khi n → + ∞ b n = 3 n 2 - 5 n + 1 n 2 + 4
l i m b n = l i m 3 n 2 - 5 n + 1 n 2 + 4 = + ∞
Tính giới hạn của dãy số u n = − 1 n cosn n 2 + 1
A. − ∞
B. Không tồn tại giới hạn
C. 1
D. 0
cho dãy số \(\left(u_n\right)\) được xác định như sau: \(\hept{\begin{cases}u_1=u_2=1\\u_{n+1}=\sqrt{u_n}+\sqrt{u_{n-1}},\end{cases}\left(n\ge2,n\in N\right)}\)
Chứng minh dãy \(\left(u_n\right)\)có giới hạn hữu hạn. Tính giới hạn đó.
Tính giới hạn của dãy số u n = ∑ k - 1 n n n 2 + k .: