Chứng minh\(\frac{2010}{\sqrt{2009}}+\frac{2009}{\sqrt{2010}}>\sqrt{2009}+\sqrt{2010}\)
Chứng minh đẳng thức:
\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2010\sqrt{2009}+2009\sqrt{2010}}=1-\dfrac{\sqrt{2010}}{2010}\)
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+........+\frac{1}{2010\sqrt{2009}+2009\sqrt{2010}}=\frac{1}{\sqrt{1}\sqrt{2}\left(\sqrt{1}+\sqrt{2}\right)}+\frac{1}{\sqrt{2}\sqrt{3}\left(\sqrt{2}+\sqrt{3}\right)}+........+\frac{1}{\sqrt{2009}\sqrt{2010}\left(\sqrt{2009}+\sqrt{2010}\right)}\)
\(=\frac{\left(\sqrt{2010}-\sqrt{2009}\right)\left(\sqrt{2010}+\sqrt{2009}\right)}{\sqrt{2009}\sqrt{2010}\left(\sqrt{2010}+\sqrt{2009}\right)}+.......+\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{2}\sqrt{1}\left(\sqrt{2}+\sqrt{1}\right)}=1-\frac{1}{\sqrt{2010}}=1-\frac{\sqrt{2010}}{2010}\)
Giải pt :\(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\)
giải pt:\(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\)
Đặt: \(\hept{\begin{cases}\sqrt{x-2009}=a\\\sqrt{y-2010}=b\\\sqrt{z-2011}=c\end{cases}}\)
Ta có: \(\frac{1}{a}-\frac{1}{a^2}+\frac{1}{b}-\frac{1}{b^2}+\frac{1}{c}-\frac{1}{c^2}-\frac{3}{4}=0\)
\(\Leftrightarrow\frac{1}{a^2}-\frac{1}{a}+\frac{1}{b^2}-\frac{1}{b}+\frac{1}{c^2}-\frac{1}{c}+\frac{3}{4}=0\)
\(\Leftrightarrow\left(\frac{1}{a^2}-\frac{1}{a}+\frac{1}{4}\right)+\left(\frac{1}{b^2}-\frac{1}{b}+\frac{1}{4}\right)+\left(\frac{1}{c^2}-\frac{1}{c}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{2}\right)^2+\left(\frac{1}{b}-\frac{1}{2}\right)^2+\left(\frac{1}{c}-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow a=b=c=\frac{1}{2}\)
Thay vào tìm x;y;z
Đặt: \(\hept{\begin{cases}\sqrt{x-2009}=a\\\sqrt{y-2010}=b\\\sqrt{z-2011}=c\end{cases}}\)
Ta có: \frac{1}{a}-\frac{1}{a^2}+\frac{1}{b}-\frac{1}{b^2}+\frac{1}{c}-\frac{1}{c^2}-\frac{3}{4}=0a1−a21+b1−b21+c1−c21−43=0
\Leftrightarrow\frac{1}{a^2}-\frac{1}{a}+\frac{1}{b^2}-\frac{1}{b}+\frac{1}{c^2}-\frac{1}{c}+\frac{3}{4}=0⇔a21−a1+b21−b1+c21−c1+43=0
\Leftrightarrow\left(\frac{1}{a^2}-\frac{1}{a}+\frac{1}{4}\right)+\left(\frac{1}{b^2}-\frac{1}{b}+\frac{1}{4}\right)+\left(\frac{1}{c^2}-\frac{1}{c}+\frac{1}{4}\right)=0⇔(a21−a1+41)+(b21−b1+41)+(c21−c1+41)=0
\Leftrightarrow\left(\frac{1}{a}-\frac{1}{2}\right)^2+\left(\frac{1}{b}-\frac{1}{2}\right)^2+\left(\frac{1}{c}-\frac{1}{2}\right)^2=0⇔(a1−21)2+(b1−21)2+(c1−21)2=0
\Leftrightarrow a=b=c=\frac{1}{2}⇔a=b=c=21
Thay vào tìm x;y;z
Giải phương trình
\(\frac{\sqrt{x-2009}}{x-2009}+\frac{\sqrt{y-2010}}{y-2010}+\frac{\sqrt{z-2011}}{z-2011}=\frac{3}{4}\)
tính U =(\(\left(\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{2010\sqrt{2009}+2009\sqrt{2010}}\right)\)
Giải phương trình: \(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\)
Thưa bn mk đã làm ra nhưng không biết có đúng không. Xem nhá:
Ta có:
\(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2001}-1}{y-2001}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\Leftrightarrow"\frac{1}{\sqrt{x-2009}}-\frac{1}{2}"^2+\)
\("\frac{1}{\sqrt{y-2010}}-\frac{1}{2}"^2-"\frac{1}{\sqrt{z-2011}}-\frac{1}{2}"^2=0\)
\(\Rightarrow x=2013;y=2014;z=2015\)
P/s: Bn thay Ngoặc Kép thành Ngoặc Đơn nhé
Giải phương trình :
\(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\)
Chứng minh: \(\frac{a^{2010}+2010}{\sqrt{a^{2010}+2009}}>2\)
đặt a^2010+2009=b
\(\Rightarrow\frac{b+1}{\sqrt{b}}\)
ta có : b+1\(\ge\)2\(\sqrt{b}\) ( cô - si)
\(\frac{b+1}{\sqrt{b}}\ge2\)
dấu = xảy ra \(\Leftrightarrow b=1\)
\(\Rightarrowđpcm\)
tính b=\(1^2-2^2+3^2-...+2008^2-2009^2\)
a=\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{2010\sqrt{2009}+2009\sqrt{2010}}\)
Câu a:
Có dạng tổng quát:\(\frac{1}{\left(k+1\right)\sqrt{k}+k\sqrt{x+1}}=\frac{1}{\sqrt{\left(k+1\right)k}\left(\sqrt{k+1}+\sqrt{k}\right)}=\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{\left(k+1\right)k}}=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k-1}}\)
Áp dụng kết quả trên suy ra câu a