Phân tích đa thức thành nhân tử: \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
Phân tích đa thức thành nhân tử: \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
phân tích đa thức thành nhân tử:
\(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
Phân tích đa thức thành nhân tử:
\(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
a( a+2b)^3 - b( 2a+b)^3
=a (a^3 + 2b^3) -b (2a^3 + b^3)
=a^4+ 2ab^3 - 2ab^3 - b^4
=( a^4-b^4) +(2ab^3-2ab^3)
=a-b
Chúc bạn hk tốt, k ch mk nha
Phân tích đa thức thành nhân tử :
\(B=\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3\)
Phân tích đa thức sau thành nhân tử :
\(B=\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3\)
\(B=\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3\)
\(=\left(a+b-2c+b+c-2a\right)\left[\left(a+b-2c\right)^2-\left(a+b-2c\right)\left(b+c-2a\right)+\left(b+c-2a\right)^2\right]+\left(c+a-2b\right)^3\)
\(=\left(c+a-2b\right)^3-\left(a-2b+c\right)\left[\left(a+b-2c\right)^2-\left(a+b-2c\right)\left(b+c-2a\right)+\left(b+c-2a\right)^2\right]\)
\(=\left(c+a-2b\right)\left[\left(c+a-2b\right)^2-\left(a+b-2c\right)^2+\left(a+b-2c\right)\left(b+c-2a\right)-\left(b+c-2a\right)^2\right]\)
\(=\left(c+a-2b\right)\left[\left(c+a-2b+a+b-2c\right)\left(c+a-2b-a-b+2c\right)+\left(a+b-2c\right)\left(b+c-2a\right)-\left(b+c-2a\right)^2\right]\)
\(=\left(c+a-2b\right)\left[\left(2a-b-c\right)\left(3c-3b\right)-\left(a+b-2c\right)\left(2a-b-c\right)-\left(b+c-2a\right)^2\right]\)
\(=\left(c+a-2b\right)\left[\left(2a-b-c\right)\left(3c-3b-a-b+2c\right)-\left(b+c-2a\right)^2\right]\)
\(=\left(c+a-2b\right)\left[\left(2a-b-c\right)\left(5c-a-4b\right)-\left(b+c-2a\right)^2\right]\)
\(=\left(c+a-2b\right)\left[\left(b+c-2a\right)\left(a+4b-5c\right)-\left(b+c-2a\right)^2\right]\)
\(=\left(c+a-2b\right)\left(b+c-2a\right)\left(a+4b-5c-b-c+2a\right)\)
\(=\left(c+a-2b\right)\left(b+c-2a\right)\left(3a+3b-6c\right)\)
\(=3\left(c+a-2b\right)\left(b+c-2a\right)\left(a+b-2c\right)\)
\(B=\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3\)
Đặt: \(a+b-2c=x;b+c-2a=y;c+a-2b=z\)
\(\Rightarrow B=x^3+y^3+z^3=\left(x+y+z\right)^3-3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
Ta thấy: \(x+y+z=a+b-2c+b+c-2a+c+a-2b=0\)
\(x+y=a+b-2c+b+c-2a=2b-a-c\)
\(y+z=b+c-2a+c+a-2b=2c-a-b\)
\(z+x=c+a-2b+a+b-2c=2a-b-c\)
Thay vào B \(\Rightarrow B=0-3\left(2b-a-c\right)\left(2c-a-b\right)\left(2a-b-c\right)\)
Vậy \(B=-3\left(2b-a-a\right)\left(2c-a-b\right)\left(2a-b-c\right).\)
Phân tích đa thức sau thành nhân tử:
\(\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3\)
Phân tích đa thức thành nhân tử:
A = \(8\left(a+b+c\right)^3-\left(2a+b-c\right)^3-\left(2b+c-a\right)^3-\left(2c+a-b\right)^3\)
\(3\left(a+3b\right)\left(b+3c\right)\left(c+3a\right)\)
Phân tích đa thức thành nhân tử: \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
Help me vs
Bạn khai triển hết ra.
\(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
\(=a\left(a^3+6a^2b+12ab^2+8b^3\right)-b\left(8a^3+12a^2b+6ab^2+b^3\right)\)
\(=a^4+6a^3b+12a^2b^2+8ab^3-8a^3b-12a^2b^2-6ab^3-b^4\)
\(=a^4-2a^3b+2ab^3-b^4\)
\(=\left(a^2-b^2\right)\left(a^2+b^2\right)-2ab\left(a^2-b^2\right)\)
\(=\left(a^2-b^2\right)\left(a^2-2ab+b^2\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(a-b\right)^2=\left(a-b\right)^3\left(a+b\right)\)
1) Phân tích đa thức sau thành nhân tử:
a) \(A=\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)
b)\(B=\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3\)