Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
BL
Xem chi tiết
DH
Xem chi tiết
Ad
14 tháng 10 2018 lúc 8:47

a) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4\right)+3^7\times\left(1+3^2+3^4\right)+...+3^{1987}\times\left(1+3^2+3^4\right)\)

\(=3\times91+3^7\times91+...+3^{1987}\times91\)

\(=3\times7\times13+3^7\times7\times13+...+3^{1987}\times7\times13\)

\(=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)

Vì \(A=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)nên A chia hết cho 13.

b) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4+3^6\right)+...+3^{1985}\times\left(1+3^2+3^4+3^6\right)\)

\(=3\times820+...+3^{1985}\times820\)

\(=3\times20\times41+...+3^{1985}\times20\times41\)

\(=41\times\left(3\times20+...+3^{1985}\times20\right)\)

Vì \(A=41\times\left(3\times20+...+3^{1985}\times20\right)\)nên A chia hết cho 41.

Bình luận (0)
NU
Xem chi tiết
EF
15 tháng 12 2017 lúc 16:45

Ta có: A= 2 + 2+ 2+ ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).

             = 2 x (2 + 1) + 2x (2 + 1) + ... + 259 x (2 + 1).

             = 2 x 3 + 23 x 3 + ... + 259 x 3.

             = 3 x ( 2 + 23 + ... + 259).

Vì A = 3 x ( 2 + 23 + ... + 259)  nên A chia hết cho 3.

           A= (2 +2+ 23) + (2+ 2 + 26) + ... + (258 + 259 + 260).

             = 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).

             = 2 x 7 + 24 x 7 + ... + 258 x 7.

             = 7 x ( 2 + 24 + ... + 258).

Vì A = 7 x ( 2 + 24 + ... + 258)  nên A chia hết cho 7.

  A= (2 +2+ 2+ 24) + (2+ 2 + 2+ 28) + ... + (257 + 258 + 259 + 260).

             = 2 x (1 + 2 + 2+ 23) + 25 x (1 + 2 + 2+ 23) + ... + 257 x (1 + 2 + 2+ 23).

             = 2 x 15 + 25 x 15 + ... + 257 x 15.

             = 15 x ( 2 + 24 + ... + 258).

Vì A = 15 x ( 2 + 24 + ... + 258)  nên A chia hết cho 15.

Ta có: B= 3 + 3+ 3+ ... + 31991= (3 + 3+ 35) + (37+ 3+ 311 ) + ... + (31987 + 31989 + 31991).

             = 3 x (1 + 3+ 34) + 37 x (1 + 3+ 34) + ... + 31987 x (1 + 3+ 34).

             = 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 3 x 7 x 13 + ... + 31987 x 7 x 13.

             = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).

Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.

           B= (3 + 3+ 3+ 37) +  ... + (31985 + 31987 + 31989 + 31991).

             = 3 x (1 + 3+ 3 + 36) +  ... + 31985 x (1 + 3+ 3​+ 36).

             = 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.

             = 41 x ( 3 x 20 + .. +  31985 x 20)

Vì B =41 x ( 3 x 20 + .. +  31985 x 20) nên B chia hết cho 41.

     
Bình luận (0)
Ad
14 tháng 10 2018 lúc 8:47

a) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4\right)+3^7\times\left(1+3^2+3^4\right)+...+3^{1987}\times\left(1+3^2+3^4\right)\)

\(=3\times91+3^7\times91+...+3^{1987}\times91\)

\(=3\times7\times13+3^7\times7\times13+...+3^{1987}\times7\times13\)

\(=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)

Vì \(A=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)nên A chia hết cho 13.

b) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4+3^6\right)+...+3^{1985}\times\left(1+3^2+3^4+3^6\right)\)

\(=3\times820+...+3^{1985}\times820\)

\(=3\times20\times41+...+3^{1985}\times20\times41\)

\(=41\times\left(3\times20+...+3^{1985}\times20\right)\)

Vì \(A=41\times\left(3\times20+...+3^{1985}\times20\right)\)nên A chia hết cho 41.

Bình luận (0)
DT
22 tháng 2 2024 lúc 20:01

Đcm

 

Bình luận (0)
OD
Xem chi tiết
TM
15 tháng 3 2015 lúc 17:07

chung minh chia het cho 3

 ta co khi dung tinh chat phan phoiVA GHEP CAP  A=2(1+2)+2^3(1+2)+............................................................+2^59(1+2)

                                                   A=2*3+2^3*3+......................................................................+2^59*3

                                                  A=3(2+2^3+......................................+2^59)

                                                  TU DO SUY RA A CHIA HET CHO 3 

CHUNG MINH A CHIA HET CHO 7

TA CO DUNG TINH CHAT PHAN PHOI VA GHEP CAP A=2(1+2+4)+..................................................................+2^58(1+2+4)

A=2*7+...................................................................+2^58*7

A=7(2+...................................+2^58)

TU DO SUY BRA A CHIA HET CHO 7 

CHUNG MINH A CHIA HET CHO 15

DUNG TINH CHAT PHAN PHOI VA GHEP CAP 

A=2(1+2+4+8)+....................................+2^57(1+2+4+8)

A=2*15+............................................+2^57*15

A=15(2+.....................+2^57)

TỪ ĐÓ SUY RA A CHIA HẾT CHỖ 15

CAI DAU LA GHEP DOI ;THU HAI GHEP 3 ;THU 3 GHEP 4

CHO MÌNH THẬT NHIỀU LIKE NHÉ CẢM ƠN

Bình luận (0)
HH
20 tháng 10 2016 lúc 18:39

Ôi giời ơi làm dài như thế này thì chết mệt mất

Bình luận (0)
NP
Xem chi tiết
AH
12 tháng 7 2018 lúc 7:42

ai tích mình mình tích lại cho

Bình luận (0)
NN
1 tháng 3 2020 lúc 20:27

k di

e he he

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
PA
Xem chi tiết
PP
Xem chi tiết
TM
10 tháng 7 2015 lúc 9:17

A=2(1+2)+2^3(1+2)+...+2^59(1+2)

A=2.3+2^3.3+...+2^59.3

A=3(2+2^3+...+2^59) chia hết cho 3

Vậy a chia hết cho 3

A=2.(1+2+4)+...+2^58(1+2+4)

A=2.7+...+2^58.7

A=7.(2+..+2^58) chia hết cho7

Vậy A chia hết cho 7

A=2(1+2+4+8)+...+2^57(1+2+4+8)

A=2.15+...+2^57.15

A=15.(2+...+2^57) chia hết cho 15 

Vậy A chia hết cho 15 

Vậy A chia hết cho 3,7,15

Bình luận (0)
TH
Xem chi tiết
KL
27 tháng 11 2015 lúc 11:41

A=2+2^2+2^3+...+2^60

=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)

=2(1+2)+2^3(1+2)+...+2^59(1+2)

=3(2+2^3+...+2^59) chia hết cho 3

A=2+2^2+2^3+...+2^60

=(2+2^2+2^3)+...+(2^58+2^59+2^60)

=2(1+2+2^2)+...+2^58(1+2+2^2)

=7(2+...+2^58) chia hết cho 7

A=2+2^2+2^3+...+2^60

=(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)

=2(1+2+2^2+2^3)+...+2^57(1+2+2^2+2^3)

=15(2+...+2^57) chia hết cho 15

 

Bình luận (0)