\(1+\frac{1+2}{2}+\frac{1+2+3}{3}+...+\frac{1+2+3+...+199}{199}\)
D=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{198}+\frac{1}{199}}{\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}}\)
\(D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{198}+\frac{1}{199}}{\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}}\)
\(D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{198}+\frac{1}{199}}{\left[\frac{1}{199}+1\right]+\left[\frac{2}{198}+1\right]+\left[\frac{3}{197}+1\right]+...+\left[\frac{198}{2}+1\right]}\)
\(D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{198}+\frac{1}{199}}{\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}}\)
\(D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{198}+\frac{1}{199}}{200\left[\frac{1}{199}+\frac{1}{198}+\frac{1}{197}+...+\frac{1}{2}\right]}=\frac{1}{200}\)
\(Tính:1+\frac{1+2}{2}+\frac{1+2+3}{3}+\frac{1+2+3+4}{4}+.....+\frac{1+2+3+.....+199}{199}\)
\(1+\frac{1+2}{2}+\frac{1+2+3}{3}+.......+\frac{1+2+3+...+199}{199}=?\)= ....................
\(1+\frac{1+2}{2}+\frac{1+2+3}{3}+...........+\frac{1+2+3......+199}{199}\)
\(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}}{\frac{1}{199}+\frac{2}{198}+....+\frac{198}{2}+\frac{199}{1}}\)
Bạn ơi, của bạn giống của mình mà, đăng làm gì, nếu cùng chung 1 kết quả thì bạn tick đúng đi.
Bạn ơi, bài này có người hỏi rồi và mình cũng trả lời rồi
Tính \(1+\frac{1+2}{2}+\frac{1+2+3}{3}+.....+\frac{1+2+3...+199}{199}\)
\(1+\frac{1+2}{2}+\frac{1+2+3}{3}+...+\frac{1+2+3+...+199}{199}\)\(=1+\frac{\frac{2.3}{2}}{2}+\frac{\frac{3.4}{2}}{3}+...+\frac{\frac{199.200}{2}}{199}\)\(=1+\frac{2.3}{2.2}+\frac{3.4}{3.2}+...+\frac{199.200}{199.2}\)\(=1+\frac{3}{2}+\frac{4}{2}+...+\frac{200}{2}\)\(=\frac{2+3+4+...+200}{2}\)\(=\frac{\frac{200.201}{2}}{2}\)\(=\frac{200.201}{2.2}\)\(=10050\)
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}}{\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{192}{2}+\frac{199}{1}}\)
Tính nhanh giúp mình nha ! NHANH HẾT MỨC CÓ THỂ NHÉ
Tính: \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}}\)
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+\left(\frac{3}{197}+1\right)+...+\left(\frac{198}{2}+1\right)+1}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}+\frac{200}{200}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{200\cdot\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+\frac{1}{197}+...+\frac{1}{2}\right)}\)
\(=\frac{1}{200}\)
Cho dãy tính :
1 + \(\frac{1+2}{2}+\frac{1+2+3}{3}+.......+\frac{1+2+3...+199}{199}=?\)