Cho c=1/3+1/32+1/33+...+1/399
Hãy so sánh c với 1/2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho S = 1/30 + 1/31 + 1/32 + 1/33 + ... + 1/49 . So sánh S với 2/3
cho tổng a=1/3+2/32+3/33+4/34+.....+2022/32022.So sánh với 3/4
So sánh C = 1/31+1/32+1/33+...+1/60 và 4/5
So sánh 1/3+1/32+1/33+...+1/32012 và 1/2
Cho S= 1/3-2/32+3/33-4/34+...+99/399-100/3100. So sánh S và 1/5
cho tổng A = 1/31 + 1/32 + 1/33 + ..... + 1/59 + 1/60 . hãy so sánh A với 4/5
bài 1 :
a) so sánh A và B biết : A =229 và B=539
b) B = 31+32+33+34+...+32010 chia hết cho 4 và 13
c) tính A = 1-3+32-33+34-...+398-399+3100
bài 2 tìm cái số nguyên n thỏa mãn
a) tìm các số nguyên n sao cho 7 ⋮ (n+1)
b) tìm các số nguyên n sao cho (2n + 5 ) ⋮ (n+1)
Bài 1:
a. $2^{29}< 5^{29}< 5^{39}$
$\Rightarrow A< B$
b.
$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$
$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$
$=(1+3)(3+3^3+3^5+...+3^{2009})$
$=4(3+3^3+3^5+...+3^{2009})\vdots 4$
Mặt khác:
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$
$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$
Bài 1:
c.
$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$
$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$
$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$
$\Rightarrow A=\frac{3^{101}+1}{4}$
Bài 2:
a. $7\vdots n+1$
$\Rightarrow n+1\in \left\{1; -1; 7; -7\right\}$
$\Rightarrow n\in \left\{0; -2; 6; -8\right\}$
b.
$2n+5\vdots n+1$
$\Rightarrow 2(n+1)+3\vdots n+1$
$\Rightarrow 3\vdots n+1$
$\Rightarrow n+1\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow n\in \left\{0; -2; 2; -4\right\}$
so sánh 1/31 +1/32 +1/33 +.....1/90 với 1
cho biểu thức A=(1/1.2+1/2.3+1/3.4+1/4.5+........+ 1/2016.2017): 2 Hãy so sánh A với 1/2
Cho biểu thức B= 1/31+1/32+1/33+1/34+........+1/60. Hãy chứng tỏ 3/5<B<4/5
\(A=\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2016.2017}\right):2\)
\(=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right):2\)
\(=\left(1-\frac{1}{2017}\right):2\)\(< \)\(\frac{1}{2}\) (Do 1 - 1/2017 < 1)
So sánh: 1/31 +1/32 +1/33+.....+1/90 với 5/6
1/31 + 1/32 + 1/33 + ... + 1/90
= (1/31 + 1/32 + ... + 1/60) + (1/61 + 1/62 + ... + 1/90)
> 1/60 × 30 + 1/90 × 30
> 1/2 + 1/3
> 5/6