Mọi người giúp em bài này với:
Tính:
\(\sqrt{1+2007^2+\frac{2007^2}{2008^2}}+\frac{2007}{2008}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Giúp em với: Tính
\(\sqrt{1+2007^2+\frac{2007^2}{2008^2}}+\frac{2007}{2008}\)
chiu roi
ban oi
tk nhe@@@@@@@@
ai tk minh minh tk lai
Bài 1: Tính P=\(\sqrt{1+2007^2+\frac{2007^2}{2008^2}}+\frac{2007}{2008}\)
Bài 2: Rút gọn biểu thức sau: P=\(\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)
Bài 1: Tính P=\(\sqrt{1+2007^2+\frac{2007^2}{2008^2}}+\frac{2007}{2008}\)
Bài 2: Rút gọn biểu thức sau: P=\(\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)
Bài 2:
\(P=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)
\(=\frac{1-\sqrt{5}}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+\frac{\sqrt{5}-\sqrt{9}}{\left(\sqrt{5}+\sqrt{9}\right)\left(\sqrt{5}-\sqrt{9}\right)}+...+\frac{\sqrt{2001}-\sqrt{2005}}{\left(\sqrt{2001}+\sqrt{2005}\right)\left(\sqrt{2001}-\sqrt{2005}\right)}\)
\(=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)
\(=\frac{1-\sqrt{5}}{-4}+\frac{\sqrt{5}-\sqrt{9}}{-4}+..+\frac{\sqrt{2001}-\sqrt{2005}}{-4}\)
\(=\frac{1-\sqrt{5}+\sqrt{5}-\sqrt{9}+...+\sqrt{2001}-\sqrt{2005}}{-4}\)
\(=\frac{1-\sqrt{2005}}{-4}\)
\(=\frac{\sqrt{2005}-1}{4}\)
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\)
\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+......+\frac{2}{2007}+\frac{1}{2008}\)
Tính \(\frac{A}{B}\)?
Các bạn giúp mình bài này nha !
CHết nhầm A/B = 1/2009 sorry bạn tk mình nha
Bài 1: Tính giá trị biểu thức: P=\(\sqrt{x+24+7\sqrt{2x-1}}+\sqrt{x+4-3\sqrt{2x-1}}\)
với\(\frac{1}{2}\le x\le5\)
Bài 2: Tính P=\(\sqrt{1+2007^2+\frac{2007^2}{2008^2}}+\frac{2007}{2008}\)
BÀI 1: Tính gần đúng:
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{2008\sqrt{2007}+2007\sqrt{2008}}\)
BÀI 2: Tìm số dư của phép chia: \(3^{2^{2009}}\) cho 11.
BÀI 3: Cho hình thoi có chu vi là 37cm, tỉ lệ hai đường chéo là 2:3. Tính giá trị đúng diện tích S của hình thoi.
MỌI NGƯỜI GIÚP MÌNH NHÉ!!!!
1. Bài 1 e bấm máy
Nhấn Shift + log sẽ xuất hiện tổng sigma
e nhập như sau:
x = 1
cái ô trống ở trên nhập 2007
còn cái biểu thức trong dấu ngoặc đơn là \(\left(\frac{1}{\left(X+1\right)\sqrt{X}+X\sqrt{X+1}}\right)\)
Rồi bấm "="
Chờ máy hiện kq sẽ hơi lâu :)
kq: 0.9776839079
2.
-B1: Tìm số dư của \(2^{2009}\) cho 11 đc kq là 6
- B2: Tìm số dư của \(3^6\) cho 11 đc kq là 3
Vậy \(3^{2^{2009}}\) chia 11 dư 3
3. Gọi độ dài đường chéo ngắn hơn là x, thì độ dài đường chéo kia là 3/2 x
Cạnh hình thoi: 37 : 4 = 9.25 (cm)
Theo định lý Pytago
\(x^2+\left(\frac{3}{2}x\right)^2=9.25^2\)
Vào Shift Solve giải ra tìm đc \(x\approx5.130976815\)
Vậy \(S=\frac{1}{2}x.\frac{3}{2}x=\frac{4107}{208}\approx19.7451923076\left(cm^2\right)\)
Tìm A =\(\frac{2008+\frac{2007}{2}+\frac{2006}{3}+\frac{2005}{4}+........\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+.........+\frac{1}{2007}+\frac{1}{2008}}\)
Giải giúp mình câu này với các bạn ơi, mình cám ơn nhiều:
tính giá trị biểu thức:
\(y=\frac{2008+\frac{2007}{2}+\frac{2006}{3}+......+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2008}+\frac{1}{2009}}\)
Giúp mình bài này với
Tính
\(A=\frac{2008+\frac{2007}{2}+\frac{2006}{3}+\frac{2005}{4}+.....+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+.....+\frac{1}{2008}+\frac{1}{2009}}\)
tử là M mẫu là N ta dc
\(M=2008+\frac{2007}{2}+...+\frac{1}{2008}\)
\(=\left(1+...+1\right)+\frac{2007}{2}+...+\frac{1}{2008}\)
\(=\frac{2009}{2}+...+\frac{2009}{2008}+\frac{2009}{2009}\)
\(=2009\left(\frac{1}{2}+...+\frac{1}{2008}+\frac{1}{2009}\right)\)
vậy ta có
\(A=\frac{M}{N}=\frac{2009\left(\frac{1}{2}+...+\frac{1}{2008}+\frac{1}{2009}\right)}{\frac{1}{2}+...+\frac{1}{2008}+\frac{1}{2009}}\)\(=2009\)