Những câu hỏi liên quan
TN
Xem chi tiết
BA
Xem chi tiết
H24
9 tháng 4 2018 lúc 17:27

Thiên bình có 102 thứ (1) lớp 8 chưa biết delta     

<=> \(\left(x^2+2\right)y=x^2+3x-5\\ \) 

\(\Leftrightarrow y=\frac{x^2+3x-5}{x^2+2}=1+\frac{3x-7}{x^2+2}\)

\(y\in Z\Leftrightarrow\frac{3x-7}{x^2+2}\in Z\) \(\Leftrightarrow\left|3x-7\right|\ge x^2+2\)=> \(-4\le x\le1\)

vô nghiệm

Bình luận (0)

 <>x^2(x-y)+2(x-y)+x-5=0(1*) 
Denta theox 
1-4(x-y)[2(x-y)-5]>=0 
<>-8(x-y)^2+20(x-y)+1>=0 
<>[-10+V(108)]/-8=<(x-y)=< 
[10+V(108)]/8 
Vì x-y nguyên nên => 
0=<(x-y)=<2 
Vậy để ptr có no nguyên 
điều kiện cần là 
x-y=0 or x-y=1,x-y=2 
Đk đủ:bạn thay lần lượt 
các giá trị của x-y ở trên vào 1* 
nếu tìm đc x nguyên thì kết luận! 
Chúc bạn học tốt 
(V(108) là cb2 của 108)

Bình luận (0)
TA
Xem chi tiết
DW
28 tháng 11 2019 lúc 22:55

1. Pt có nghiệm khi

Bình luận (0)
 Khách vãng lai đã xóa
PS
Xem chi tiết
PH
Xem chi tiết
AH
18 tháng 3 2021 lúc 2:02

Lời giải:

PT $\Leftrightarrow x^3+3x-5=x^2y+2y=y(x^2+2)$

$\Rightarrow y=\frac{x^3+3x-5}{x^2+2}$

Để $y$ nguyên thì $x^3+3x-5\vdots x^2+2$

$\Leftrightarrow x(x^2+2)+x-5\vdots x^2+2$

$\Leftrightarrow x-5\vdots x^2+2(1)$

$\Rightarrow x^2-5x\vdots x^2+2$

$\Leftrightarrow x^2+2-(5x+2)\vdots x^2+2$

$\Leftrightarrow 5x+2\vdots x^2+2(2)$

Từ $(1);(2)\Rightarrow 5(x-5)-(5x+2)\vdots x^2+2$

$\Leftrightarrow 27\vdots x^2+2$. Do $x^2+2\geq 2$ nên:

$\Rightarrow x^2+2\in\left\{3;9;27\right\}$

$\Rightarrow x^2\in\left\{1;7;25\right\}$

Do $x$ nguyên nên $x\in\left\{\pm 1; \pm 5\right\}$

Thay vào $y$ ta tìm được: 

$x=-1\Rightarrow y=-3$

$x=5\Rightarrow y=5$

Bình luận (0)
TM
Xem chi tiết
H24
19 tháng 10 2021 lúc 16:34

1, \(2x^2+4x=2x\left(x+2\right)\)

2, \(15x^3+5x^2-10x=5x\left(3x^2+x-2\right)=5x\left(x-\dfrac{2}{3}\right)\left(x+1\right)\)

3) \(5x^2\left(x-2y\right)+15x\left(x-2y\right)=\left(5x^2+15x\right)\left(x-2y\right)=5x\left(x+3\right)\left(x-2y\right)\)

4) \(3\left(x-y\right)+5x\left(y-x\right)=\left(x-y\right)\left(3-5x\right)\)

5) \(5x^2-10x=5x\left(x-2\right)\)

6) \(3x-6y=3\left(x-2y\right)\)

7) \(25x^2+5x^3+x^2y=x^2\left(25+5x+y\right)\)

8) \(14x^2y-21xy^2+28x^2y^2=7xy\left(2x-3y+4xy\right)\)

9) \(x\left(y-1\right)-y\left(y-1\right)=\left(x-1\right)\left(y-1\right)\)

10) \(10x\left(x-y\right)-8y\left(y-x\right)=\left(10x+8y\right)\left(x-y\right)=2\left(5x+4y\right)\left(x-y\right)\)

Bình luận (1)
NM
19 tháng 10 2021 lúc 16:35

\(1,=2x\left(x+2\right)\\ 2,=5x\left(3x^2+x-2\right)\\ 3,=\left(x-2y\right)\left(5x^2+15x\right)=5x\left(x+3\right)\left(x-2y\right)\\ 4,=\left(x-y\right)\left(3-5x\right)\\ 5,=5x\left(x-2\right)\\ 6,=3\left(x-2y\right)\\ 7,=5x^2\left(5+x+y\right)\\ 8,=7xy\left(2x-3y+4xy\right)\\ 9,=\left(y-1\right)\left(x-y\right)\\ 10,=\left(x-y\right)\left(10x+8y\right)=2\left(5x+4y\right)\left(x-y\right)\)

Bình luận (1)
PS
Xem chi tiết
HP
Xem chi tiết
LN
22 tháng 1 2017 lúc 11:47

Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số

Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số 

Bình luận (0)
HP
22 tháng 1 2017 lúc 20:00

giải zõ hộ

Bình luận (0)
Xem chi tiết
NN
1 tháng 11 2020 lúc 16:12

Bài 1 :

a) \(x^3-x^2-x-2=0\)

\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)

\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)

\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)

Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)

Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)

Vậy \(x=2\)

Bình luận (0)
 Khách vãng lai đã xóa
NN
1 tháng 11 2020 lúc 16:16

Bài 2: 

\(2x^2+y^2-2xy+2y-6x+5=0\)

\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)

Vì \(\left(x-y-1\right)^2\ge0\forall x,y\)\(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)

Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)

Vậy \(x=2\)và \(y=1\)

Bình luận (0)
 Khách vãng lai đã xóa