Tìm GTLN của biểu thức A= -x^2+4x
Làm ơn giúp mk, mk đang cần gấp
Tìm GTLN,GTNN của biểu thức sau:
a)-x^2+9x-12
b)2x^2+10x-1
c)(2x+6)(x-1)
d)3x-2x^2
mk đang cần gấp nên mn giúp mk nha.cảm ơn mn trước
a) Đặt \(A=-x^2+9x-12\)
\(-A=x^2-9x+12\)
\(-A=\left(x^2-9x+\frac{81}{4}\right)-\frac{33}{4}\)
\(-A=\left(x-\frac{9}{2}\right)^2-\frac{33}{4}\)
Mà \(\left(x-\frac{9}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge-\frac{33}{4}\Leftrightarrow A\le\frac{33}{4}\)
Dấu "=" xảy ra khi : \(x-\frac{9}{2}=0\Leftrightarrow x=\frac{9}{2}\)
Vậy \(A_{Max}=\frac{33}{4}\Leftrightarrow x=\frac{9}{2}\)
b) Đặt \(B=2x^2+10x-1\)
\(B=2\left(x^2+5x+\frac{25}{4}\right)-\frac{29}{4}\)
\(B=2\left(x+\frac{5}{2}\right)^2-\frac{29}{4}\)
Mà \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow B\ge-\frac{29}{4}\)
Dấu "=" xảy ra khi : \(x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)
Vậy \(B_{Min}=-\frac{29}{4}\Leftrightarrow x=-\frac{5}{2}\)
c) Đặt \(C=\left(2x+6\right)\left(x-1\right)\)
\(C=2x^2-2x+6x-6\)
\(C=2x^2+4x-6\)
\(C=2\left(x^2+2x+1\right)-8\)
\(C=2\left(x+1\right)^2-8\)
Mà \(\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow C\ge-8\)
Dấu "=" xảy ra khi : \(x+1=0\Leftrightarrow x=-1\)
Vậy \(C_{Min}=-8\Leftrightarrow x=-1\)
d) Đặt \(D=3x-2x^2\)
\(-2D=4x^2-6x\)
\(-2D=\left(4x^2-6x+\frac{9}{4}\right)-\frac{9}{4}\)
\(-2D=\left(2x-\frac{3}{2}\right)^2-\frac{9}{4}\)
Mà \(\left(2x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-2D\ge-\frac{9}{4}\)
\(\Leftrightarrow D\le\frac{9}{8}\)
Dấu "=" xảy ra khi : \(2x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{4}\)
Vậy \(D_{Max}=\frac{9}{8}\Leftrightarrow x=\frac{3}{4}\)
Tìm GTLN của :
a) A = -x2+6x-9
b) B = -x2+3x+1
c) C = -4x2+3x
( các bạn giải nhanh giúp mk nha mk đang cần gấp cảm ơn nhiều )
Tìm GTLN hoặc GTNN của biểu thức sau
A=x^2-12x+7
B=-2x-20x
C=x-x^2-4
giúp mk nha
Mk đang cần gấp!!!!!
Help meeeee
\(A=x^2-12x+7=x^2-12x+36-29\)
\(=\left(x-6\right)^2-29\ge-29\)
Vậy \(A_{min}=-29\Leftrightarrow x=6\)
\(C=x-x^2-4=-\left(x^2-x+4\right)\)
\(=-\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{3}{4}\le-\frac{3}{4}\)
Vậy \(C_{min}=\frac{-3}{4}\Leftrightarrow x=\frac{1}{2}\)
Cho 2 biểu thức:
\(A=\frac{2\sqrt{x}+1}{x+\sqrt{x}+1}\&P=\frac{2\sqrt{x}+1}{\sqrt{x}+1}.\)
Tìm GTLN của biểu thức \(M=\frac{A}{P}.\)
Giúp mk giải nha m.n! mk đang cần gấp lắm! THANKS!!!
Giúp mk giải bài này vs nha!! Mk đang cần gấp
a) Tìm GTNN của A= x2_ 20x +101
b) Tìm GTLN của B= _x2 + 4x + 3
a) \(A=x^2-2.10x+100+1\)
\(A=\left(x-10\right)^2+1>=1\)với mọi x
Dấu = xảy ra khi x-10 =0
=>x=10
Min A=1 khi x=10
b) Câu b bạn viết sai đề rồi B= -x^2 +4x -3 mới làm dc
a)A= \(\left(x^2-2.x.10+100\right)+1\)
=\(\left(x-10\right)^2+1>=1\)
Dấu "=" xảy ra <=> \(\left(x-10\right)^2=0\)<=> \(x-10=0\)<=>\(x=10\)
Vậy MinA = 1 khi x=10
a) \(A=x^2-20x+101\)
\(\Rightarrow A=x^2-20x+100+1\)
\(\Rightarrow A=\left(x-10\right)^2+1\)
Ta có : \(\left(x-10\right)^2\ge0\forall x\)
\(\Rightarrow A=\left(x-10\right)^2+1\ge1\forall x\)
\(A=1\Leftrightarrow\left(x-10\right)^2=0\)
\(\Leftrightarrow x-10=0\Leftrightarrow x=10\)
Vậy Min A = 1 <=> x = 10
b) \(B=-x^2+4x+3\)
\(\Rightarrow B=-\left(x^2-4x+4\right)+7\)
\(\Rightarrow B=-\left(x-2\right)^2+7\)
Ta có : \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow-\left(x-2\right)^2\le0\forall x\)
\(\Rightarrow B=-\left(x-2\right)^2+7\le7\forall x\)
\(B=7\Leftrightarrow-\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy Max B = 7 <=> x = 2
giúp MK với
1 /
a ) Tìm GTNN ( giá trị nhỏ nhất )của biểu thức :
M = |x + 8| + |y-3| + 2018
b ) Tìm GTLN ( giá trị lớn nhất ) của biểu thức :
N = - |x+2| - |y-1| + 1999
mk đang cần rất gấp chìu mai mk hok rùi giúp nha ai nhanh nhất mk cho 3 tick lun nha
a) Nhận xét :
/ x + 8 / > 0 với mọi x
/ y - 3 / > 0 với mọi y
=> / x + 8 / + / y - 3 / > 0
=> / x + 8 / + / y - 3 / + 2018 > 2018
=> M > 2018
=> Giá trị nhỏ nhất của M = 2018
Dấu " = " xảy ra khi :
/ x + 8 / = 0
và / y - 3 / = 0
=> x + 8 = 0
và y - 3 = .0
=> x = - 8
Và y = 3
Vậy giá trị nhỏ nhất của M là 2018 khi x = - 8 và y = 3
b) Nhận xét :
/ x + 2 / > 0 với mọi x
/ y - 1 / > 0 với mọi y
=> / x + 2 / + / y - 1 / > 0
=> - / x + 2 / - / y - 1 / < 0
=> - / x + 2 / - / y - 1 / + 1999 < 1999
=> N < 1999
=> Giá trị lớn nhất của N = 1999
Dấu " = " xảy ra khi :
/ x + 2 / = 0
và / y - 1 / = 0
=> x + 2 = 0
và y - 1 = 0
=> x = - 2
và y = 1
Vậy giá trị lớn nhất của N là 1999 khi x = - 2 và y = 1
Tìm giá trị của x để bbieeur thức sau có giá trị dương :
a , M=(x+5).(x+9)
b, Z= x +4x
giúp mk với mk đang cần cực kỳ gấp nha . Cảm ơn nhiều
Tính giá trị của biểu thức A= \(\sqrt{x^2+4xy^2+4y^4}-\sqrt{4x^2-12xy^2+9y^4}\) Tại x= \(\sqrt{2}\) y=1
giúp mk với các bạn làm ơn, mk cần gấp
\(=\sqrt{\left(x+2y^2\right)^2}-\sqrt{\left(2x-3y^2\right)^2}\)\(=x+2y^2-3y^2+2x=3x-y^2=3\cdot\sqrt{2}-1\)
Tìm GTLN và GTNN của biểu thức A = \(\frac{x^2}{x^4+x^2+1}\)
Mk cần gấp ! Cảm ơn mọi người nhiều ạ !
Max : với x = 0 thì \(A=\frac{x^2}{x^4+x^2+1}=0\)
với x khác 0 thì x4 + 1 \(\ge\)2x2 > 0 nên x4 + x2 + 1 \(\ge\)3x2
\(\Rightarrow\)\(A=\frac{x^2}{x^4+x^2+1}\le\frac{x^2}{3x^2}=\frac{1}{3}\)
Vậy max A = \(\frac{1}{3}\)\(\Leftrightarrow\)x = 1 hoặc -1
Min : Ta có : x4 + x2 + 1 = ( x2+ 1 )2 - x2 = ( x2 - x + 1 ) ( x2 + x + 1 ) > 0
\(\Rightarrow\)\(A\ge0\)( vì x2 \(\ge\)0 )