Phân tích thanh nhan tu
x^2+2xy+y^2-x-y-12
Phan tich thanh nhan tu
x^2 - y - y^2 - x
\(x^2-y-y^2-x=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)
x2 - y - y2 - x
= (x2 - y2) - x - y
= (x - y)(x + y) - (x + y)
= (x - y - 1)(x + y)
x^2 - 2xy + y^2 - z^2 phan tich da thuc thanh nhan tur
\(x^2-2xy+y^2-z^2\\=(x^2-2xy+y^2)-z^2\\=(x-y)^2-z^2\\=(x-y-z)(x-y+z)\)
phan tich da thuc thanh nhan tu
x^2-x-y^2-y
x^2-2xy+y^2-z^2
bai 32 va 33 sbt
lop 8 bai phan tich da thuc thanh nhan tu bang cach nhom hang tu
Ta có
a, x2-x-y2-y
=x2-y2-(x+y)
=(x-y)(x+y) - (x+y)
=(x+y)(x-y-1)
b, x2-2xy+y2-z2
=(x-y)2-z2
=(x-y-z)(x-y+z)
con bai 32, 33 neu ban tra loi duoc minh h them
phan tich da thuc thanh nhan tu
9-x^2+2xy-y^2
\(=3^2-\left(x-y\right)^2=\left[3-\left(x-y\right)\right]\left[3+\left(x-y\right)\right]=\left(3-x+y\right)\left(3+x-y\right)\)
\(9-x^2+2xy-y^2\)
\(=9-\left(x^2-2xy+y^2\right)\)
\(=3^2-\left(x-y\right)^2\)
\(=\left(3-x+y\right)\left(3-x-y\right)\)
phân tích thành nhân tử
\(x^2+2xy+y^2-x-y-12\)
\(x^2+2xy+y^2-x-y-12\)
\(=\left(x+y\right)^2-\left(x+y\right)-12\)
\(=\left(x+y\right)^2-4\left(x+y\right)+3\left(x+y\right)-12\)
\(=\left(x+y\right)\left(x+y-4\right)+3\left(x+y-4\right)\)
\(=\left(x+y-4\right)\left(x+y+3\right)\)
Phân tích
x^2+2xy+y^2-x-y-12
Phân tích thành nhân tử ak
\(=\left(y+x-4\right)\left(y+x+3\right)\)
= (x + y)2 - ( x + y) - 12
= ( x + y ) ( x + y - 1) - 12
phan tich thanh cac nhan tu da thuc
x^2-25+y+2xy
Phan tich thanh nhan tu
x^2 - 5x + 5
x2 - 5x + 5
= x2 - 5(x + 1)
= x2 - \(\left[\sqrt{5\left(x+1\right)}\right]^2\)
= [x - \(\sqrt{5\left(x+1\right)}\)][x + \(\sqrt{5\left(x+1\right)}\)]
Phân tich da thuc thanh nhan tu
\(^{x^2-2xy+y^2-2x+2y}\)
\(x^3-49x\)
\(x^2-y^2+6x+9\)
\(x^2-6x+5\)
a)x2-2xy+y2-2x+2y
=(x2-2xy+y2-2x+2y+1)-1
=(x-y-1)2-1
=(x-y-2)(x-y)
b)x3-49x
=x(x2-72)
=x(x+7)(x-7)
c)x2-y2+6x+9
=(x2+6x+9)-y2
=(x+3)2-y2
=(x-y+3)(x+y+3)
d)x2-6x+5
=x2-5x-x+5
=x(x-5)-(x-5)
=(x-1)(x-5)