tim chu so tan cung cua so sau
\(333^{555^{777}}+777^{555^{333}}\)
\(2013^{2017}+2017^{2019}\)
CRM:H=333333+555555+777777 khong phai la so chinh phuong
333^555^777+777^555^333 chia hết cho 10
555^2≡5 (mod 10)
555"^3≡5 (mod 10)
555^5=555^2.555^3≡5.5≡5 (mod 10)
~~> 555^777≡5 (mod 10)
Suy ra
333^555^777 đồng dư với 333^5
Do 333^5=3332.3333≡3 (mod10)
Vậy chữ số tận của 333^555^777 là 3 . (1)
Làm tương tự ta được 777^555^333 có chữ số tận cùng là 7 (2)
(1) và (2)Suy ra 333^555^777 +777^555^333 có chữ số tận cùng là 0
Vậy 333^555^777 +777^555^333 chia hết cho 10.
CMR 333^555^777 +777^555^333 chia hết cho 10
Cm 333^555^777+777^555^333 chia hết cho 10
C/m 333^555^777+777^555^333 chia hết cho 10
Ta có :
\(555^2\equiv5\left(mod10\right)\)
\(555^3\equiv5\left(mod10\right)\)
\(555^5=555^2\cdot555^3\equiv5\cdot5\equiv5\left(mod10\right)\)
\(\Rightarrow555^{777}\equiv5\left(mod10\right)\)
Suy ra :
\(333^{555^{777}}\) đồng dư với \(333^5\)
Do \(333^5=3332\cdot3333\equiv3\left(mod10\right)\)
Vậy chữ số tận cùng của \(333^{555^{777}}\) là 3 (1)
Tương tự : \(777^{555^{333}}\) có chữ số chữ số tận cùng là 7 (2)
Từ (1) ; (2) suy ra :
\(333^{555^{777}}\)\(+777^{555^{333}}\) có chữ số tận cùng là 0
Vậy \(333^{555^{777}+}777^{555^{333}}\) \(⋮10\)
CMR : \(333^{555^{777}}+777^{555^{333}}⋮10\)
555 ^ 2 ≡ 5 (mod 10)
555 ^3≡5 (mod 10)
555^5=555^2.555^3≡5.5≡5 (mod 10)
~~> 555^777≡5 (mod 10)
Suy ra
333^555^777đồng dư với 333^5
Do 333^5=333^2.333^3≡3 (mod10)
Vậy chữ số tận của 333^555^777 là 3 . (1)
Làm tương tự ta được 777^555^333 có chữ số tận cùng là 7 (2)
(1) và (2) Suy ra 333^555^777 +777^555^333 có chữ số tận cùng là 0
Vậy 333^555^777 +777^555^333 chia hết cho 10.
CMR:\(333^{555^{777}}+777^{555^{333}}⋮10\)
\(555\equiv-1\left(\text{mod 4}\right)\Rightarrow555^{777}\equiv\left(-1\right)^{777}\left(\text{mod 4}\right)\equiv\left(-1\right)\left(\text{mod 4}\right)\)
\(\Rightarrow\text{555^777 chia 4 dư 3. }\)
\(555^{333}\equiv\left(-1\right)^{333}\left(\text{mod 4}\right)\equiv\left(-1\right)\left(\text{mod 4}\right)\)
\(\Rightarrow\text{555^333 chia 4 dư 3}\)
\(\text{Đến đây dễ rồi -__-}\)
Câu hỏi của ♥✪BCS★Shimaru❀ ♥ - Toán lớp 7 - Học toán với OnlineMath
nếu có cách khác cách mod jj này thì giải hộ tớ với ạ + giải thích kĩ chút nha :)) thanks!
hình như bài đó tớ làm sai mới nên đăng câu hỏi nhờ SP tớ:3
Cm 333^555^777+777^555^333 chia hết cho 10
Chứng minh rằng: (333555^777+777555^333) chia hết cho 10
(333555^777+777555^333)=...3+...7=...0
=>chia hết cho 10
nhưng nhỡ nó có tận cùng là 9,1 thì sao