Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
VT
Xem chi tiết
NT
Xem chi tiết
DN
Xem chi tiết
NK
28 tháng 7 2016 lúc 12:48

Ta có:  \(a^2+b^2+1=2\left(ab+a+b\right)\)

\(\Leftrightarrow\)\(a^2+b^2+1-2ab-2a-2b=0\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)-2a+2b+1-4b=0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2-2\left(a-b\right)+1=4b\)

\(\Leftrightarrow\)\(\left(a-b-1\right)^2=4b\)                                                             \(\left(1\right)\)

Do đó \(4b\)là một số chính phương, mà 4 là số chính phương suy ra b là số chính phương.

Đặt  \(b=x^2,\)thay vào \(\left(1\right)\):                           \(\left(a-x^2-1\right)^2=4x^2\)

                                                                   \(\Leftrightarrow\)\(\left(a-x^2-1\right)^2=\left(2x\right)^2\)

                  * Xét 2 trường hợp:

- Trường hợp 1: \(a-x^2-1=2x\)\(\Leftrightarrow\)\(a=x^2+2x+1=\left(x+1\right)^2\)

Ta có  \(b=x^2\)và  \(a=\left(x+1\right)^2\)\(\Rightarrow\)\(a\)và  \(b\)là 2 số chính phương liên tiếp.

- Trường hợp 2:  \(a-x^2-1=-2x\)\(\Leftrightarrow\)\(a=x^2-2x+1=\left(x-1\right)^2\)

Ta có  \(b=x^2\)và  \(a=\left(x-1\right)^2\)\(\Rightarrow\)\(a\)và  \(b\)là 2 số chính phương liên tiếp.

                           Vậy  \(a\)và  \(b\)là 2 số chính phương liên tiếp.

Bình luận (0)
H24
28 tháng 7 2016 lúc 9:06

hi chao ban

Bình luận (0)
NP
28 tháng 7 2016 lúc 10:40

hello bạn

Bình luận (0)
CK
Xem chi tiết
H24
24 tháng 2 2019 lúc 18:23

Em không chắc đâu ạ.

\(PT\Leftrightarrow a^2+b^2+1-2ab-2a-2b=0\)

\(\Leftrightarrow\left(a-b\right)^2-2\left(a+b\right)+1=0\)

Pt có nghiệm \(\Leftrightarrow\Delta'=\left(a+b\right)^2-\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow4ab\ge0\Leftrightarrow ab\ge0\Leftrightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\)

Với a = 0 thì \(b^2-2b+1=0\Leftrightarrow\left(b-1\right)^2=0\Leftrightarrow b=1\)

Khi đó a,b là hai số chính phương liên tiếp (1)

Tương tự ta cũng có với b = 0 thì a = 1.

Khi đó a,b là hai số chính phương liên tiếp (2)

Từ (1) và (2) ta có đpcm.

Bình luận (0)
H24
24 tháng 2 2019 lúc 18:29

Ơ chết,hình như mình sai thì phải

Bình luận (0)
PA
Xem chi tiết
LB
Xem chi tiết
DQ
19 tháng 9 2020 lúc 4:40

Ta có: \(a^2+b^2+1=2\left(ab+a+b\right)\)

\(\Leftrightarrow a^2+b^2+1-2ab+2a-2b=4a\)

\(\Leftrightarrow\left(a-b+1\right)^2=4a\)(*)

Do a,b nguyên nên \(\left(a-b+1\right)^2\)là số chính phương. Suy ra a là số chính phương a=x2 (x nguyên)

Khi đó (*) trở thành : \(\left(x^2-b+1\right)^2=4x^2\Rightarrow x^2-b+1=\pm2x\Leftrightarrow b=\left(x\mp1\right)^2\)

Vậy a và b là hai số chính phương liên tiếp.

Bình luận (0)
 Khách vãng lai đã xóa
NS
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết
ND
21 tháng 11 2015 lúc 11:42

\(a^2+b^2+1-2ab-2a+2b=4b\)

\(\left(a-b-1\right)^2=4b=4.k^2=\left(2k\right)^2\)  ; với b = k2

=> a -k2 -1 =2k => a =k+2k+1 =(k+1)2

hoặc a - k2 -1 = -2 k => a = (k -1)2 

=> Vậy .....

Bình luận (0)
NR
21 tháng 11 2015 lúc 11:33

Cristiano Ronaldo nói dễ thì làm đi

Bình luận (0)