Những câu hỏi liên quan
NH
Xem chi tiết
VN
Xem chi tiết
NP
20 tháng 1 2016 lúc 19:09

Ta có:abc chia hết cho 27

=>abc chia hết cho 3 và 9

=>(a+b+c) chia hết cho 3 và 9

=>(b+c+a) chia hết cho 3 và 9

=>bca chia hết cho 3 và 9

=>bca chia hết cho 27

Bình luận (0)
WH
20 tháng 1 2016 lúc 19:10

siêu nhân mà bài này chẳng làm được

Bình luận (0)
NV
Xem chi tiết
PH
28 tháng 12 2014 lúc 20:05

bca = 100b + 10c + a (1)
abc chia hết 27 <=> 100a + 10b + c chia hết 27 <=> 19a + 10b + c chia hết 27
=> c = 27k - 19a - 10b
Thay vào (1) => bca = 100b + 10(27k - 19a - 10b) + a = 270k - 189a = 27(10k - 7a) chia hết 27

Bình luận (0)
H24
Xem chi tiết
LH
4 tháng 7 2016 lúc 11:48

Bài 1 :

 abc chia hết cho 27

\(⇒\)100a + 10b + c chia hết cho 27

\(⇒\)10(100a + 10b + c) chia hết cho 27

\(⇒\)1000a + 100b + 10c chia hết cho 27

\(⇒\)999a + (100b + 10c + a) chia hết cho 27

Mà 999a chia hết cho 27 

Vậy 100b + 10c + a = bca chia hết cho 27

Bài 2:

Gọi 2 số đó là a và b ( a >b )

Ta có:

a + b = 3 ( a - b )

a + b = 3a - 3b

a + b + 3b = 3a

b + 3b = 3a - a 

2a = 4b 

a = 2b

Thương 2 số đó là:\(\frac{a}{b}=2\)

Bình luận (0)
HA
Xem chi tiết
DV
20 tháng 10 2015 lúc 20:05

Ta có abc chia hết cho 27

=> 10(100a + 10b + c) chia hết cho 27

=> 1000a + 100b + 10c chia hết cho 27

=> 999a + (100b + 10c + a) chia hết cho 27

Mà 999a chia hết cho 27 

Vậy 100b + 10c + a = bca chia hết cho 27

Bình luận (0)
H24
20 tháng 10 2015 lúc 20:03

chia hết cho 27 là chia hêt cho 3 và 9 .

abc chia hết cho 9 <=> a+b+c chia hết cho 9

do đó b+c+a chia hết cho 9 .

Vậy bca chia hết cho 27

 

Bình luận (0)
H24
Xem chi tiết
SF
13 tháng 6 2017 lúc 10:52

Giả sử abc chia hết cho 27 thì trước hết abc phải chia hết cho 9 => a+b+c chia hết cho 9 
=> bca cũng chia hết cho 9 => bca = 9m (m € N) 
ta có: abc = 27k với (k € N) 
abc - bca = 27k - 9m 
<=> (100a + 10b + c) - (100b + 10c + a) = 9(3k-m) 
<=> 99a - 90b - 9c = 9(3k - m) 
<=> 11a - 10b - c + m = 3k 
<=> 21a - 10(a+b+c) + 9c + m = 3k 
Vế phải chia hết cho 3 mà các số: 21a ; 10(a+b+c) và 9c đều chia hết cho 3 
=> m cũng chia hết cho 3 
=> m = 3n (n € N) 
=> bca = 9m = 27n => bca chia hết cho 27 (đpcm) 

Bình luận (0)
TD
13 tháng 6 2017 lúc 10:56

abc \(⋮\)27

\(\Rightarrow\)abc0 \(⋮\)27

\(\Rightarrow\)1000a + bc0 \(⋮\)27

\(\Rightarrow\)27 . 37a + bca \(⋮\)27

Do 27 . 37a \(⋮\)27 nên bca \(⋮\)27

Bình luận (0)
LD
13 tháng 6 2017 lúc 11:05

SKT_NTT bạn thân làm quá tắt 

MK giải rõ hơn nè : 

Ta có : abc chia hết cho 27 

=> abc x 10 chia hết cho 27 

Hay abc0 chia hết cho 27

<=> 1000a + bc0  chia hết cho 27

<=> 999a + bc0 + a  chia hết cho 27

<=> 27.37.a + bca chia hết cho 27

Mà 27.37.a chia hết cho 27 

Nên bca chia hết cho 27 

Bình luận (0)
LQ
Xem chi tiết
VI

Bạn vào tìm kiếm có câu hỏi tương tự nhé!

Bình luận (0)
 Khách vãng lai đã xóa
LQ
8 tháng 8 2021 lúc 11:07

vãi thật luôn

Bình luận (0)
 Khách vãng lai đã xóa
CR
8 tháng 8 2021 lúc 11:17

abc- bac
<=> (100a + 10b + c) - (100b + 10c + a) = 9(3k-m)
<=> 99a - 90b - 9c = 9(3k - m)
<=> 11a - 10b - c + m = 3k
<=> 21a - 10(a+b+c) + 9c + m = 3k
Vế phải chia hết cho 3 mà các số: 21a ; 10(a+b+c) và 9c đều chia hết cho 3
=> m cũng chia hết cho 3
=> m = 3n (n € N)
=> bca = 9m = 27n => bca chia hết cho 27 (đpcm)

Hok tốt

Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
NH
25 tháng 6 2016 lúc 10:26

Ta có:abc chia hết cho 27

⇒100a + 10b + c chia hết cho 27

⇒10(100a + 10b + c) chia hết cho 27

⇒1000a + 100b + 10c chia hết cho 27

⇒999a + (100b + 10c + a) chia hết cho 27

Mà 999a chia hết cho 27

Vậy 100b + 10c + a = bca chia hết cho 27 

Bình luận (0)
SB
25 tháng 6 2016 lúc 10:29

bca = 100b + 10c + a ( 1 )

abc chia hết cho 27 < = > 100b + 10c + a chia hết cho 27 <=> 19a + 10b + c chia hết cho 27

=> c = 27k - 19a - 10b 
Thay vào ( 1 ) => bca = 100b + 10 ( 27k - 19a - 10b ) + a = 270K - 189a = 27( 10k - 7a ) chia hết cho 27

Bình luận (0)
CT
26 tháng 6 2016 lúc 21:41

Ta có:abc chia hết cho 27

⇒100a + 10b + c chia hết cho 27

⇒10(100a + 10b + c) chia hết cho 27

⇒1000a + 100b + 10c chia hết cho 27

⇒999a + (100b + 10c + a) chia hết cho 27

Mà 999a chia hết cho 27

Vậy 100b + 10c + a = bca chia hết cho 27 

Bình luận (0)
LX
Xem chi tiết
KS
28 tháng 11 2017 lúc 21:44

Ta có : abc chia hết cho 27
=> 100.a + 10.b + c chia hết cho 27
=> 10. ( 100.a + 10.b + c ) chia hết cho 27
=> 1000.a + 100.b + 10.c chia hết cho 27
=> 999.a + ( 100.b + 10.c + a ) chia hết cho 27.
Mà 999.a chia hết cho 27 nên 100.b + 10.c + a chia hết cho 27
Hay bca chia hết cho 27.
Vậy bca chia hết cho 27.

Bình luận (0)
TH
22 tháng 11 2024 lúc 20:27

Ta thấy : abc chia hết cho 27
=> 100.a + 10.b + c chia hết cho 27
=> 10. ( 100.a + 10.b + c ) chia hết cho 27
=> 1000.a + 100.b + 10.c chia hết cho 27
=> 999.a + ( 100.b + 10.c + a ) chia hết cho 27.
Mà 999.a chia hết cho 27 nên 100.b + 10.c + a chia hết cho 27
Hay bca chia hết cho 27.
Vậy bca chia hết cho 27.

Bình luận (0)