Những câu hỏi liên quan
H24
Xem chi tiết
NC
Xem chi tiết
TL
4 tháng 9 2016 lúc 16:02

thứ lỗi cho mk , mk không biết làm ; bài này khó quá

Bình luận (0)
TT
4 tháng 9 2016 lúc 16:09

chuẩn k chỉnh

Bình luận (0)
AL
4 tháng 9 2016 lúc 18:14

mik không bieetsn hà banj

Bình luận (0)
NU
Xem chi tiết
KN
29 tháng 7 2020 lúc 17:54

Đặt \(A=x^2+y^2+z^2+xy+yz+zx\)

Áp dụng BĐT Bunyakovsky dạng phân thức, ta được: \(2A=x^2+y^2+z^2+\left(x+y+z\right)^2\ge\frac{\left(x+y+z\right)^2}{3}+\left(x+y+z\right)^2\)

\(=\frac{4\left(x+y+z\right)^2}{3}=12\Rightarrow A\ge6\)

Đẳng thức xảy ra khi x = y = z = 1

Bình luận (0)
 Khách vãng lai đã xóa
PQ
Xem chi tiết
PT
Xem chi tiết
PL
Xem chi tiết
PL
9 tháng 5 2016 lúc 19:25

Mình quên yêu cầu bài 2: Tìm GTNN GTLN của x.

Bình luận (0)
PL
9 tháng 5 2016 lúc 19:26

yêu cầu bài 2 Tìm giá trị min max của x

Bình luận (0)
LH
9 tháng 5 2016 lúc 20:46

áp dụng bđt bunhia đê 

Bình luận (0)
HC
Xem chi tiết
NU
6 tháng 12 2023 lúc 23:07

Ta thấy 
72
=
2
3
.
3
2
72=2 
3
 .3 
2
  nên a, b có dạng 
{

=
2

3


=
2

.
3


a=2 
x
 3 
y
 
b=2 
z
 .3 
t
 

  với 

,

,

,


N
x,y,z,t∈N và 



{

,

}
=
3
;



{

,

}
=
2
max{x,z}=3;max{y,t}=2. 

 Theo đề bài, ta có 
2

.
3

+
2

.
3

=
42

x
 .3 
y
 +2 
z
 .3 
t
 =42

 

2


1
.
3


1
+
2


1
3


1
=
7
⇔2 
x−1
 .3 
y−1
 +2 
z−1
 3 
t−1
 =7   (*), do đó 

,

,

,


1
x,y,z,t≥1

 TH1: 



,



x≥z,y≤t. Khi đó 

=
3
,

=
2
x=3,t=2. (*) thành:

 
4.
3


1
+
3.
2


1
=
7
4.3 
y−1
 +3.2 
z−1
 =7 


=

=
1
⇔y=z=1

 Vậy 
{

=
24

=
18

a=24
b=18

  (nhận)

 TH2: KMTQ thì giả sử 



,



x≥z,y≥t. Khi đó 

=
3
,

=
2
x=3,z=2. (*) thành 

 
4.
3


1
+
2.
3


1
=
7
4.3 
y−1
 +2.3 
t−1
 =7, điều này là vô lí.

 Vậy 
(

,

)
=
(
24
,
18
)
(a,b)=(24,18) hay 
(
18
,
24
)
(18,24) là cặp số duy nhất thỏa yêu cầu bài toán.

Bình luận (0)
HH
Xem chi tiết
DH
Xem chi tiết