chứng minh với mọi \(n\in Z\)thì \(n^2+n+1\)không chia hết cho 3
Chứng minh rằng với mọi n thuộc Z thì (n-1)(n+2)+12 không chia hết cho 7
Xin lỗi, mình nhầm phải là không chia hết cho 9.
Chia het cho may thi minh cung ko biet lam vi minh moi lop 5
1.Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) ( n + 6 ) chia hết cho 2
2.Chứng tỏ rằng với mọi số tự nhiên n thì tích n(n+5) chia hết cho 2
3. Gọi A = n2 + n + 1 . Chứng minh rằng :
a) A không chia hết cho 2
b) A không chia hết cho 5
2,
+ n chẵn
=> n(n+5) chẵn
=> n(n+5) chia hết cho 2
+ n lẻ
Mà 5 lẻ
=> n+5 chẵn => chia hết cho 2
=> n(n+5) chia hết cho 2
KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N
3,
A = n2+n+1 = n(n+1)+1
a,
+ Nếu n chẵn
=> n(n+1) chẵn
=> n(n+1) lẻ => ko chia hết cho 2
+ Nếu n lẻ
Mà 1 lẻ
=> n+1 chẵn
=> n(n+1) chẵn
=> n(n+1)+1 lẻ => ko chia hết cho 2
KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)
b, + Nếu n chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
+ Nếu n chia 5 dư 1
=> n+1 chia 5 dư 2
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 2
=> n+1 chia 5 dư 3
=> n(n+1) chia 5 dư 1
=> n(n+1)+1 chia 5 dư 2
+ Nếu n chia 5 dư 3
=> n+1 chia 5 dư 4
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 4
=> n+1 chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)
Chứng minh rằng với mọi n thuộc Z :
a) n^3 -n+4 không chia hết cho 3
b) n^2 +11n +39 không chia hết cho 49
c) A(n) = n( n^2+1)(n^2+4) chia hết cho 5
chứng minh rằng với mọi n thuộc Z thì: n2 + n - 16 không chia hết cho 25
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
1+2+3+4+5+6+7+8+9=133456 hi hi
đào xuân anh sao mày gi sai hả
???????????????????
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
Chứng minh rằng:
Với mọi n không chia hết cho 3 thì( n^2-1 )chia hết cho 3
Do \(n⋮̸3\Rightarrow\orbr{\begin{cases}n=3k+1\\n=3k+2\end{cases}\left(k\inℤ\right)}\)
+) Với \(n=3k+1\) thì ta có :
\(n^2-1=\left(3k+1\right)^2-1=3k\left(3k+2\right)⋮3\)
+) Với \(n=3k+2\) thì ta có :
\(n^2-1=\left(3k+2\right)^2-1=3\left(k+1\right)\left(3k+1\right)⋮3\)
Vậy ta có điều phải chứng minh.
+)Theo bài n\(⋮̸\)3
=>n=3k+1 hoặc n=3k+2
*TH1:n=3k+1
=>n2-1=(3k+1)2-1=(3k+1).(3k+1)-1=9k2+3k+3k+1-1=3.(3k2+k+k)\(⋮\)3
*Th2:n=3k+2
=>n2-1=(3k+2)2-1=(3k+2).(3k+2)-1=9k2+6k+6k+4-1=9k2+6k+6k+3=3.(3k2+2k+2k+1)\(⋮\)3
Vậy với n không chia hết cho 3 thì n2-1 chia hết cho 3
Chúc bn học tốt
Ta dùng tính chất sau:với mọi nko chia hết 3 thì n^2 chia 3 dư 1
Chúng minh:Ta có Vì n ko chia hết cho 3 nên
\(\Rightarrow\orbr{\begin{cases}n=3k+1\\n=3k+2\end{cases}}\left(k\inℤ\right)\)
TH1:n=3k+1
\(\Rightarrow n^2=\left(3k+1\right)^2=3k\left(3k+1\right)+\left(3k+1\right)\equiv1\left(mod3\right)\)
TH2:n=3k+1
\(\Rightarrow n^2=\left(3k+2\right)^2=3k\left(3k+2\right)+2\left(3k+2\right)=3k\left(3k+2\right)+2.3k+4\equiv1\left(mod3\right)\)
Suy ra điều phải chứng minh
Áp dụng vào bài trên ta có:Vì n ko chia hết cho 3 nên n^2 chia 3 dư 1
Suy ra n^2-1 chia hết cho 3
Cách này lớp 8 nha:Dùng định lý Fermat nhỏ
Ta có:Theo định lý Fermat nhỏ thì \(n^{p-1}-1⋮p\)với p là số nguyên tố,n là số nguyên và (n,p)=1
Thay p=3 thì ta có:\(n^{3-1}-1⋮3\Rightarrow n^2-1⋮3\)
Mà n và 3 thỏa mãn định lý là (n,3)=1
Suy ra điều phải chứng minh
chứng minh rằng:
a) (n+6)^2-(n-6)^2 chia hết cho 24 với mọi n thuộc Z
b) n^2+4n+3 chia hết cho 8 với mọi n thuộc Z
c) (n+3)^2-(n-1)^2 chia hết cho 8 với mọi
giải chi tiết,cảm ơn!
a) \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)
\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)
\(=12.2n\)
\(=24n\)
Vì 24n chia hết cho 24 với mọi n
=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)
b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.
\(n^2+4n+3\)
\(=n^2+n+3n+3\)
\(=n\left(n+1\right)+3\left(n+1\right)\)
\(=\left(n+3\right)\left(n+1\right)\)
Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )
Thay n = 2k + 1 vào ta được
\(\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=2\left(k+2\right)2\left(k+1\right)\)
\(=4\left(k+2\right)\left(k+1\right)\)
Vì (k + 2)(k + 1) là tích của hai số liên tiếp
=> (k + 2)(k + 1) chia hết cho 2
=> 4(k + 2)(k + 1) chia hết cho 8
=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )
c) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)
\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)
\(=4\left(2n+2\right)\)
\(=4.2\left(n+1\right)\)
\(=8\left(n+1\right)\)
Vì 8(n + 1) chia hết cho 8 với mọi n
=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )