Chứng minh rằng (5n + 2)2 - 4 chia hết cho 5 với mọi số nguyên n.
Toán 8.
Chứng minh rằng (5n + 2)2 – 4 chia hết cho 5 với mọi số nguyên n
Ta có:
(5n + 2)2 – 4
= (5n + 2)2 – 22
= (5n + 2 – 2)(5n + 2 + 2)
= 5n(5n + 4)
Vì 5 ⋮ 5 nên 5n(5n + 4) ⋮ 5 ∀n ∈ Ζ.
Vậy (5n + 2)2 – 4 luôn chia hết cho 5 với n ∈ Ζ
. Chứng minh rằng (5n + 2)2 – 4 chia hết cho 5 với mọi số nguyên n.
(5n + 2)2 - 4 = 10n + 4 - 4 = 10n chia hết cho 5 với mọi số nguyên
(5n +2)x2-4=5nx2+2x2-4
= 10n + 4-4
= 10n + 0
= 10n ; 10n chia hết cho 5
vậy vs mọi n thì (5n+2)2-4 chia hết cho 5
ủng hộ nhé
Bài tập 52/ 24/ SGK 8/ HKI
Chứng minh rằng (5n + 2)2 - 4 chia hết cho 5 với mọi số nguyên n
Ta có: \(\left(5n+2\right)^2-4=\left(5n+2\right)^2-2^2\)
\(=\left(5n+2-2\right)\left(5n+2+2\right)\)
\(=5n\left(5n+4\right)\)
Vì tích \(5n\left(5n+4\right)\text{ có chứa }5\left(n\inℤ\right)\)
\(\Rightarrow5n\left(5n+4\right)⋮5\forall n\inℤ\)
\(\left(5n+2^{ }\right)^2-4=\left(5n+2\right)^2-2^2\)
\(=\left(5n+2-2\right)\left(5n+2+2\right)\)
\(=5n\left(5n+4\right)\)
Vì tích 5n(5n+4) có chứa 5 và n ∈ Z
do đó 5n(5n+4) ⋮ 5 ∀ n ∈ Z
Chứng minh rằng ( 5n + 2 )2 - 4 chia hết cho 5 với mọi số nguyên n.
Ta có: \(\left(5n+2\right)^2-4=\left(5n+2-2\right)\left(5n+2+2\right)\)
\(=5n\left(5n+4\right)\)
\(=25n^2+20n\)
Nx: \(25n^2⋮5\)với mọi \(n\inℤ\)
\(20n⋮5\)với mọi \(n\inℤ\)
\(\Rightarrow25n^2+20n⋮5\)với mọi \(n\inℤ\)
Vậy \(\left(5n+2\right)^2-4⋮5\)với mọi số nguyên n
\(\left(5n+2\right)^2-4=25n^2+10n+4-4=25n^2+10n\)
-Mà: \(\hept{\begin{cases}25n^2⋮5\\10n⋮5\end{cases}}\Rightarrowđpcm\)
Ta có:
(5n+2)2 - 4 = 25n2 +20n + 4 - 4 = 25n2 + 20n = 5n(5n + 4)
Do 5 chia hết cho 5 => 5n(5n + 4) chia hết cho 5
=> (5n+2)2 - 4 chia hết cho 5 với mọi số nguyên n
Chứng minh rằng (5n + 2)2 – 4 chia hết cho 5 với mọi số nguyên n.
Ta có : (5n + 2)2 – 4
= 25n2 + 20n + 4 - 4
= 25n2 + 20n
= 5(5n2 + 4n) chia hết cho 5
Ta có \(\left(5n+2\right)^2-4\)
=\(25n^2+20n+4-4\)
=\(25n^2+20n\)
=\(5\left(5n^2+4n\right)⋮5\)
Chứng minh rằng (5n + 2)2 – 4 chia hết cho 5 với mọi số nguyên n.
Ta có : (5n + 2)2 – 4 = (5n + 2)2 – 22
= (5n + 2 - 2)(5n + 2 + 2)
= 5n(5n + 4)
Vì 5 5 nên 5n(5n + 4) 5 ∀n ∈ Z.
Chứng minh rằng \(\left(5n+2\right)^2-4\) chia hết cho 5 với mọi số nguyên n ?
Bài giải:
Ta có : (5n + 2)2 – 4 = (5n + 2)2 – 22
= (5n + 2 - 2)(5n + 2 + 2)
= 5n(5n + 4)
Vì 5 5 nên 5n(5n + 4) 5 ∀n ∈ Z.
\((5n + 2)^2 - 4\) \(= (5n +2 )^2 - 2^2\)
\(= (5n +2 - 2) (5n + 2 + 2 )\)
\(= 5n(5n + 4)\)
\(\Rightarrow\) \(5\) \(⋮\) \(5\) nên \(5n(5n +4)\) \(⋮\) \(5\) với mọi số nguyên thuộc \(n\)
Vậy biểu thức \((5n + 2)^2 - 4\) chia hết cho \(5\) với mọi số nguyên thuộc \(n\)
Ta có : (5n + 2)2 – 4 = (5n + 2)2 – 22
= (5n + 2 - 2)(5n + 2 + 2)
= 5n(5n + 4)
Vì 5 ⋮ 5 nên 5n(5n + 4) ⋮ 5 ∀n ∈ Z.
chứng minh rằng(5n+2)^2-4 chia hết cho 5 với mọi số nguyên n
làm hộ mình nha mình tik cho 3 tik
bài này dễ mà. như sau nhé :
(5n+2)2-4= 25n2+20n+4-4 (áp dụng hằng đẳng thức số 1)
= 25n2+20n
Vì 25 chia hết cho 5 => 25n2 chia hết cho 5 với mọi số nguyên n
20 chia hết cho 5 => 20n chia hết cho 5 với mọi số nguyên n
=> (25n2 + 20n) chia hết cho 5 với mọi số nguyên n
=> (5n +2)2 - 4 chia hết cho 5 với mọi số nguyên n
k cko mk nhé !!!
Ta có
(5n+2)^2-4=25n^2+20n+4-4=25n^2+20n
Mà 25n^2 chia hết cho 5 với mọi n thuộc Z
20n chia hết cho 5 với mọi nthuộc Z
=>25n^2+20n chia hết cho 5 với mọi n thuộc Z
hay (5n+2)^2-4 chia hết cho 5 với mọi n thuộc Z
Chứng minh rằng \(\left(5n+2\right)^2-4\) chia hết cho 5 với mọi số nguyên n.
Ta có : \(\left(5n+2\right)^2-4\)
\(=\left(5n+2-2\right).\left(5n+2+2\right)\)
\(=5n\left(5n+4\right)\)
Vì \(5⋮5\) nên \(\left(5n+2\right)^2-4⋮5\forall n\in Z\)
(5n+2)^2 - 4 = (25n^2 + 2*2*5n + 2^2) - 4 = 25n^2 + 20n + 4 - 4
= 25n^2 + 20n = 5n(5n + 4)
--> (52+2)^2 - 4 = 5n(5n + 4)
Mà 5 chia hết cho 5
-->5n(5n + 4) chia hết cho 5