Những câu hỏi liên quan
SA
Xem chi tiết
LH
21 tháng 3 2020 lúc 21:46

\(S=5+5^2+5^3+...+5^{2008}\)

a) Ta có: \(126=5^0+5^3\)

\(5+5^4=5\left(5^0+5^3\right)\text{ }⋮\text{ }126,\text{ }5^2+5^5=5^2\left(5^0+5^3\right)\text{ }⋮\text{ }126,...\)

Áp dụng lần lượt như thế, ta có:

\(\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+\left(5^7+5^{10}\right)+\left(5^8+5^{11}\right)+\left(5^9+5^{12}\right)+...+\left(5^{2005}+5^{2008}\right)\text{ }⋮\text{ }126\)

Còn thiếu \(5^{2006}+5^{2007}\), ta có: \(5^{2006}+5^{2007}=5^{2006}\left(5^0+5^1\right)=5^{2006}\cdot6=2\cdot3\cdot5^{2006}\)

Trong khi đó: \(126=2\cdot3^2\cdot7\)

Ta dễ thấy \(5^{2006}+5^{2007}\) không chia hết cho \(3\cdot7=21\), nên \(5^{2006}+5^{2007}\) không chia hết cho 126.

Từ đó suy ra S không chia hết cho 126.

b) Tất cả các số hạng đều có chữ số tận cùng là 5.

Biểu thức S có \(\left(2008-1\right)+1=2008\) số hạng cộng lại với nhau.

=> S có chữ số tận cùng là 0 (vì số lượng các số hạng cộng lại với nhau là số chẵn)

Bình luận (0)
 Khách vãng lai đã xóa
KH
Xem chi tiết
NT
26 tháng 12 2022 lúc 20:27

b)

B=5+52+...+596

Do 5 mũ bao niêu tận cùng là 5

=>tận cùng của B là chữ số tận cùng của tổng các chữ số tận cùng của các số hạng của B

Số số hạng của B là:96-1+1=96(số hạng)

=>Tổng các chữ số tận cùng của các số hạng của  B là:5x96=480

=>chữ số tận cùng của B là 0

Vậy chữ số tận cùng của B là 0

Bình luận (0)
SX
Xem chi tiết
TA
19 tháng 9 2020 lúc 15:12

a) Ta có: \(S=5+5^2+5^3+...+5^{96}\)

        \(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{93}+5^{96}\right)\)

    Vì mỗi cặp của đa thức  \(S\)có hai hạng tử nên tổng số cặp là: \(\frac{96}{2}=48\)( cặp )

         \(\Rightarrow\)Đa thức  \(S\)không dư số nào

        \(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{93}+5^{96}\right)\)

        \(\Leftrightarrow S=5.\left(5^0+5^3\right)+5^2\left(5^0+5^3\right)+5^3.\left(5^0+5^3\right)+...+5^{93}.\left(5^0+5^3\right)\)

        \(\Leftrightarrow S=5.126+5^2.126+5^3.126+...+5^{93}.126\)

        \(\Leftrightarrow S=\left(5+5^2+5^3+...+5^{93}\right).126⋮126\)

Vậy \(S⋮126\)

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
CT
Xem chi tiết
NP
14 tháng 2 2016 lúc 8:59

Dễ nhưng nhiều quá===>không làm

Bình luận (0)
CT
14 tháng 2 2016 lúc 9:01

giúp mình với ^^

Bình luận (0)
LP
Xem chi tiết
H24
Xem chi tiết
NQ
17 tháng 11 2017 lúc 21:21

A = (2+2^2)+(2^3+2^4)+....+(2^99+2^100)

= 2.(1+2)+2^3.(1+2)+....+2^99.(1+2)

= 2.3+2^3.3+....+2^99.3

= 3.(2+2^3+....+2^99) chia hết cho 3

A = (2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^97+2^98+2^99+2^100)

= 2.(1+2+2^2+2^3)+2^5.(1+2+2^2+2^3)+....+2^97.(1+2+2^2+2^3)

= 2.15+2^5.15+....+2^97

= 3.5.(2+2^5+....+2^97) chia hết cho 5

=> ĐPCM 

k mk nha

Bình luận (0)
TP
17 tháng 11 2017 lúc 21:26

kb vs mik ko quân

Bình luận (0)
BD
17 tháng 11 2017 lúc 22:38

=>2a=2^2+2^3+...+2^101

2a-a=2^101-2

1a=2^101-2

a=2^101-2:1

Bình luận (0)
LH
Xem chi tiết
HG
7 tháng 9 2015 lúc 22:55

a,Tổng trên có 96 số hạng, nhóm 4 số thành 1 nhóm ta được 24 nhóm 

S = 5 + 52 + 53 +.....+ 596

S = (5+52+53+54)+(55+56+57+58)+.....+(593+594+595+596)

S = 5(1+5+52+53)+55(1+5+52+53)+....+593(1+5+52+53)

S = 5.156 + 55.156 +.....+ 593.156

S = 156.(5+55+....+593) chia hết cho 26 (vì 156 chia hết cho 26)

Ta có: 5+55+.....+593 có 24 số hạng có tận cùng là 5

(vì 5 nhân lên lũy thừa bao nhiêu cũng cho 1 số có tận cùng là 5)

=> 5+55+...+593 có tận cùng là (...5) + (...5) +......+ (...5) gồm 24 số

=> 5+55+...+593 có tận cùng là 5.24 = ...0

=> S = 156.(5+55+...+593)

=> S = 156.(...0)

=> S = (...0)

=> Chữ số tận cùng của S là 0

Bình luận (0)
MT
24 tháng 12 2016 lúc 19:06

sai câu b rùi cậu ơi 

Bình luận (0)
MH
25 tháng 12 2017 lúc 12:58

Câu b sai. Làm như sau mới đúng. số tận cùng của S là 5.

b, Có:

S       =5+52+53+…+596

5S     =5(5+52+53+…+596)

                =52+53+54…+597

5S-S  =(52+53+54…+597)-( 5+52+53+…+596)

4S     =597-5

S       =(597-5)/4

Mà 597-5=596.5-5=54.24.5-5=(54)24.5-5=62524.5-5=…0625.5-5=…3125-5=3120

S       =…..3120/4

20 chia 4 =5. Vậy tận cùng của S là 5

Bình luận (0)
PT
Xem chi tiết