tổng 5 số chia liên tiếp chia hết cho10
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
chứng minh rằng tổng 5 số chẵn liên tiếp thì chia hết cho10 còn tổng của 5 số lẻ liên tiếp thì chia cho 10 dư 5
Giúp mink với các bạn
5 số chẵn liên tiếp phai có đuôi lần lượt là:0;2;4;8;6
mà tổng 5 số chẵn liên tiếp sẽ co dang :...0+....2+...4+...6+...8=.........0
mà các số có tận là 0 thì chia hết cho 10
5 số lẻ liên tiếp phải có tận lần lượt là:1;3;5;7;9
mà tổng 5 số lẻ liên tiếp thì sẽ có dạng:.....1+........3+.......5+........7+.........9=..........5
ma cac số có tận là 5 thì chia 10 đều dư 5
k nha
Chứng minh rằng tổng của 5 số tự nhiên chẵn liên tiếp thì chia hết cho 5
Chứng minh rằng tổng 5 số tn lẻ liêp tiếp chia cho10 dư 5 ?
gọi 5 số chẵn liên tếp là 2a;2a+2;2a+4;2a+6;2â+8
Tổng chúng là:
2a+2a+2+2a+4+2a+6+2a+8
=10a+20
=5.(2a+4) chia hết cho 5
1, CMR: tổng của 3 số tự nhiên liên tiếp chia hết cho 3, tổng của 5 số tự nhiên liên tiếp thì chia hết cho 5
2,CMR:
+ tổng của 3 số chẵn liên tiếp thì chia hết cho 6
+ tổng của 3 số lẻ liên tiếp thì không chia hết cho 6
+ tổng của 5 số chẵn liên tiếp thì chia hết cho 10 còn tổng của 5 số lẻ liên tiếp thì chia 10 dư 5
1.Gọi 3 số tự nhiên liên tiếp là a, a+1, a+2
Có: a+(a+1)+(a+2)=a+a+a+1+2=3a+3=3(a+1)\(⋮\) 3
Vậy ...
Gọi 5 số tự nhiên liên tiếp là a, a+1, a+2,a+3,a+4
Có : a+(a+1)+(a+2)+(a+3)+(a+4)= a+a+a+a+a+1+2+3+4=5a+10=5(a+2)\(⋮\) 5
Vậy ...
2.
+)Gọi 3 số chẵn liên tiếp là a, a+2,a+4
Có : a+(a+2)+(a+4)=a+a+a+2+4=3a+6
mà a là số chẵn nên 3a \(⋮\) 6
\(\Rightarrow\) 3a+6\(⋮\) 6
Vậy ....
+) ngược lại ý đầu
+)Gọi 5 số chẵn liên tiếp là a, a+2,a+4 , a-2,a-4
Có : a+(a+2)+(a+4)+(a-2)+(a-4)=a+a+a+a+a+2+4-2-4=5a
mà a là số chẵn nên 5a \(⋮\) 10
\(\Rightarrow\) 5a\(⋮\) 10
Vậy ....
+) ngược lại ý 3
Chứng minh:
a) Tổng ba số chẵn liên tiêp chia hết cho3
b) Tổng ba số lẻ liên tiếp chia hết cho 3
c) Tổng 5 số nguyên liên tiếp chia hết cho 5 nhưng tổng của 6 số nguyên liên tiếp không chia hết cho 6
a, vì trong 3 số đó có số chia hết cho 3
b, vì trong 3 số lẻ có số chia hết cho 3
c, vì 6 số thì sẽ 3 cặp có tổng tương đương và cặp ở giữa là 2 số liên tiếp có tổng là số lẻ cho nên 3 cặp đó sẽ bằng tổng nhau nhân lên 3 lần lên 6 số liên tiếp ko chia hết cho 6 mà chỉ chia hết cho 3.
a)Gọi 3 số chẵn liên tiếp là 2n;2n+2;2n+4.Theo bài ra ta có: \(\left(2n+2n+2+2n+4\right)⋮3\)
\(2n+2n+2+2n+4=6n+6\)\(=6\left(n+1\right)\)
\(=\left[3.2\left(n+1\right)\right]⋮3\)=>Điều phải chứng minh.
b)Gọi 3 số lẻ liên tiếp là 2n+1;2n+3 và 2n+5.Theo bài ra ta có: \(\left(2n+1+2n+3+2n+5\right)⋮3\)
\(2n+1+2n+3+2n+5=6n+9\)\(=\left[3\left(2n+3\right)\right]⋮3\) =>Điều phải chứng minh.
c)Gọi 6 số nguyên liên tiếp là n;n+1;n+2;...;n+5.Theo bài ra ta có:
\(\left(n+n+1+n+2+n+3+n+4\right)⋮5\)\(=5n+10\)
\(=\left[5\left(n+2\right)\right]⋮5\)=>Điều phải chứng minh.
\(\left(n+n+1+n+2+n+3+n+4+n+5\right)\)không \(⋮6\)\(=6n+15\) .Vì \(15\) không \(⋮6\)=> \(6n+15\)không \(⋮6\).
T_i_c_k cho mình nha.
Thank you so much!Wish you would better at Math ^^
a)Gọi ba số nguyên liên tiếp là a, a+1, a+2
ta có cấc+a+1+a+2=3a+3
vì 3a chia hết cho 3
3 chia hết cho 3
nên tổng của 3 số nguyên liên tiếp thì chia hết cho 3
b)Gọi 5 số nguyên liên tiếp là a,a+1,a+2.a+3.a+4
ta có:a+a+1+a+2+a+3+a+4=10a+5 chia hết cho 5
chúc bạn học tốt !!!
chứng minh rằng
Tổng của ba số lẻ liên tiếp không chia hết cho 6
Tổng của ba số chẵn liên tiếp chia hết cho 6
Tổng của năm số chẵn liên tiếp chia hết cho 10
Tổng của 5 số lẻ liên tiếp chia 10 dư 5
nhanh mình tick
3+5+7 = 15 không chia hết cho 6
4+6+8=18 chia hết cho 6
8+10+12=30 chia hết cho 10
13+15+17=45 chia 10 dư 5
k mình nha!!!!!!!!!!
Gọi 3 số lẻ liên tiếp không chia hết cho 6 là: 6k+1;6k+3;6k+5
Tông của 3 số lẻ liên tiếp ko chia hết cho 6 là: 6k+1+6k+3+6k+5
6k+1+6k+3+6k+5=6k.3+8
Vì 8 không chia hết cho 6 =>6k.3+8 ko chia hết cho 6
Vậy tổng ba số lẻ liên tiếp ko chia hết cho 6
.
Gọi 3 số chẵn chia hết cho 6 là:6k;6k+2;6k+4
Tổng của 3 số chẵn chia hết cho 6 là:6k+6k+2+6k+4
6k+6k+2+6k+4=6k.3+6
Vì 6 chia hết cho 6 => 6k.3+6 chia hết cho 6
Vậy tổng 3 số tự nhiên chẵn liên tiếp chia hết cho 6
.
Gọi 5 số chẵn liên tiếp chia hết cho 10 là: 10k;10k+2;10k+4;10k+6;10k+8
Tổng 5 chẵn liên tiếp chia hết cho 10 là:10k+10k+2+10k+4+10k+6+10k+8=10k.5+30
Vì 30 chia hết cho 10 => 10k.5+30 chia hết cho 10
Vậy tổng của năng số chẵn liên tiếp chia hết cho 10
.
Gọi 5 số lẻ liên tiếp không chia hết cho 10 là: 10k+1;10k+3;10k+5;10k+7;10k+9
Tổng của 5 số lẻ liên tiếp ko chai hết cho 10 là: 10k+1+10k+3+10k+5+10k+7+10k+9
10k+1+10k+3+10k+5+10k+7+10k+9=10k.5+25
Vì 25 : 10 ( dư 5) => 10k.5+25 : 10 (dư 5)
Vậy tổng của 5 số lẻ liên tiếp chia cho 10 (dư 5)
Chứng minh rằng:
a, tổng của ba số chẵn liên tiếp thì chia hết cho 6.
b, tổng của ba số lẻ liên tiếp không chia hết cho 6.
c, tổng của 5 số chẵn liên tiếp thì chia hết cho 10, còn tổng của 5 số lẻ liên tiếp thì chia 10 dư 5.
a) Gọi ba số chẵn liên tiếp là: a; a+2; a+4
Ta có: a+a+2+a+4=3a+6
Vì 6 chia hết cho 6=>3a+6 chia hết cho 6
=>tổng của ba số chắn liên tiếp chia hết cho 6
a.gọi 3 số tự nhiên liên tiếp lạ:
a;a+2;a+4(a thuộc n;a=2k)
có
a+a+2+a+4=3a+6=3.2k+6 chia hết cho 6
b.gọi 3 số lẻ liên tiếp là:
a+1,a+3;a+5(a thuộc n;a=2k)
có:a+5+a+1+a+3=3a+9=6k+9
=6k+9=6k+9 ko chi hết cho 6
c.gọi ......là:a,a+2,a+4;a+6;a+8(a thuộc n;a=2k)
a+a+2+a+4+a+6+a+8=5a+20=10k+20=10(k+2) chia hết cho 10=>đpcm
d.tương tự trên có
a+1+a+3+a+5+a+7+a+9=5a+25=10k+25=10k+20+5=10(k+2)+5 chia 10 dư 5=>đpcm
các bn ơi giải giúp mik bài này vs
CMR
a) với mọi n thuộc N thì 60n + 45 chia hết cho 15 nhưng không chia hết cho 30
b) tổng ba số nguyên liên tiếp chia hết cho 3 , tổng 4 số nguyên liên tiếp không chia hết cho 4
c) Tổng 5 số chẵn liên tiếp chia hết cho 10 , tổng 5 số lẻ liên tiếp chia 10 dư 5
d) Cho 4 số tự nhiên không chia hết cho 5 , khi chia cho 5 được các số dư khác nhau . CM : tổng của chúng chia hết cho 5
các bn ơi giải giúp mik bài này vs
CMR
a) với mọi n thuộc N thì 60n + 45 chia hết cho 15 nhưng không chia hết cho 30
b) tổng ba số nguyên liên tiếp chia hết cho 3 , tổng 4 số nguyên liên tiếp không chia hết cho 4
c) Tổng 5 số chẵn liên tiếp chia hết cho 10 , tổng 5 số lẻ liên tiếp chia 10 dư 5
d) Cho 4 số tự nhiên không chia hết cho 5 , khi chia cho 5 được các số dư khác nhau . CM : tổng của chúng chia hết cho 5
a) thấy 60 chia hết cho 15 => 60n chia hết cho 15
45 chia hết cho 15 nhưng không chi hết cho 30
=> 60n+45 chia hết cho 15 nhưng không chia hết cho 30
b) ta có 3 số nguyên liên tiếp là a,a+1,a+2
tổng của 3 số nguyên liên tiếp này là a+a+1+a+2=3a+3 chia hết cho 3
d) vì khi chia 4 stn này cho 5 nhận các số dư khác nhau => 1 số là 5k+1, 1 số là 5n+2, 1 số là 5a+3, 1 số là 5b+4 (với k,n,a,b thuộc n)
=> tổng 4 stn này là 5k+1+5n+2+5a+3+5b+4= 5(k+n+a+b)+5 chia hết cho 5
a)
60n + 45 = 15 x 4n + 3 x 15 = 15 x ( 4n + 3 )
=> Chia hết cho 30 .
_ Vì 60n chia hết cho 30 mà 45 không chia hết cho 30 .
=> 60n + 45 không chia hết cho 30 .
b)
1)
_ Gọi 3 số tự nhiên liên tiếp là : a , a + 1 , a + 2 .
Ta có : a + ( a + 1 ) + ( a + 2 ) = 3a + 3 .
Vì 3a chia hết cho 3 , 3 chia hết cho 3 .
=> Tổng 3 số tự nhiên liên tiếp chia hết cho 3 .
2)
_ Gọi 4 số tự nhiên liên tiếp là : a , a + 1 , a + 2 , a + 3 .
Ta có : a + ( a + 1 ) + ( a + 2 ) + ( a + 3 ) = 4a + 6 .
Vì 4a chia hết cho 4 , 6 không chia hết cho 4 .
=> Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 .
c)
1)
_ Gọi 5 số chẵn liên tiếp là : a , a + 2 , a + 4 , a + 6 , a + 8 .
Ta có : a + ( a + 2 ) + ( a + 4 ) + ( a + 6 ) + ( a + 8 ) = 5a + 20 .
Vì 5a chia hết cho 5 , 20 chia hết cho 5 .
=> Tổng 5 số chẵn liên tiếp chia hết cho 5 .
2)
_ Gọi 5 số lẻ liên tiếp là : b , b + 2 , b + 4 , b + 6 , b + 8 .
Ta có : b + ( b + 2 ) + ( b + 4 ) + ( b + 6 ) + ( b + 8 ) = 5b + 20 .
Vì b là số lẻ nên 5b không chia hết cho 2 hay không chia hết cho 2,5 = 10 .
20 chia hết cho 10 .
=> 5b + 20 không chia hết cho 10 .
=> Tổng 5 số lẻ liên tiếp chia 10 dư 5 .
các bn ơi giải giúp mik bài này vs
CMR
a) với mọi n thuộc N thì 60n + 45 chia hết cho 15 nhưng không chia hết cho 30
b) tổng ba số nguyên liên tiếp chia hết cho 3 , tổng 4 số nguyên liên tiếp không chia hết cho 4
c) Tổng 5 số chẵn liên tiếp chia hết cho 10 , tổng 5 số lẻ liên tiếp chia 10 dư 5
d) Cho 4 số tự nhiên không chia hết cho 5 , khi chia cho 5 được các số dư khác nhau . CM : tổng của chúng chia hết cho 5