cho a=1=1\2+1\3-1\4+1\5...+1\49-1\50.Chung to rang 7\12<4<5\6
chung minh rang:1/(1*2)+1/(3*4)+1/(5*6)+.....+1/(49*50)=1/26+1/27+1/28+....+1/50
Cho A=1/3^2+1/4^2+1/5^2+...+1/50^2
Chung to rang a,A>1=4 b,A>4/9
Cho A=1/3^2+1/4^2+1/5^2+...+1/50^2
Chung to rang a,A>1=4 b,A>4/9
Cho A=1/3^2+1/4^2+1/5^2+...+1/50^2
Chung to rang 1/4<M<4/9
Cho A=1/3^2+1/4^2+1/5^2+...+1/50^2
Chung to rang 1/4<M<4/9
Cho A=1/3^2+1/4^2+1/5^2+...+1/50^2
Chung to rang 1/4<M<4/9
cho A=1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50
chứng minh rằng 7/12<A<5/6
Cho A =1-1/2+1/3-1/4+...+1/49-1/50 Hãy chứng tỏ rằng 7/12<A<5/6
cho A=1 - 1/2 + 1/3 - 1/4 +1/5 - 1/6 +..............+1/49 -1/50
Chứng tỏ 7/12<A<5/6
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=\left(1+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right).\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\right)\)\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)
\(A=\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{35}\right)+\left(\frac{1}{36}+...+\frac{1}{50}\right)>\frac{1}{35}.10+\frac{1}{50}.15=\frac{41}{70}>\frac{7}{12}\)
\(A< \frac{10}{26}+\frac{15}{36}< \frac{5}{6}\) Vậy ....