Những câu hỏi liên quan
PH
Xem chi tiết
TT
24 tháng 8 2017 lúc 20:51

vì (x-2016)^2016 >= 0 vs mọi x

    (y-2017)^2018>= 0 vs mọi y

    /x+y-z/ >= 0 vs mọi x,y,z

mà (x-2016)^2016+(y-2017)^2018+/x-y+z/=\(\hept{\begin{cases}\left(x-2016\right)^{2016}=0\\^{\left(-2017\right)^{2018}}=0\\x+y-z=0\end{cases}}\)0 nên ​\(\hept{\begin{cases}x-2016=0\\y-2017=0\\x+y-z\end{cases}}\)\(\hept{\begin{cases}x=2016\\y=2017\\x+y-z=0\end{cases}}\)

Bình luận (0)
TT
24 tháng 8 2017 lúc 20:52

mà x+y=2016+2017=4033

\(\Rightarrow\)4033-z=0

z=4033

vậy x=2016 y=2017 z=4033

Bình luận (0)
TP
Xem chi tiết
HG
11 tháng 7 2016 lúc 8:58

x2016 + (x-1)2018 = 0

Có x2016 \(\ge\)0

     (x-1)2018  \(\ge\)0

 Để x2016 + (x-1)2018 = 0

=> x2016 = 0 và (x-1)2018 = 0

=> x = 0 và x - 1 = 0

=> x = 0 và x = 1 (vô lí vì x không thể cùng lúc nhận 2 giá trị)

=> Không có giá trị nào của x thỏa mãn đề bài

Bình luận (0)
BO
Xem chi tiết
H24
21 tháng 10 2016 lúc 13:32

vì giá trị tuyệt đối không nhận giá trị âm nên

x-2015=0;x-2016=0;y2017=0;y-2018=0

=>x=2015;x=2016;y=2017;y=2018

Vì x và y không nhận hai giá trị cùng một lúc nên x y không tồn tại

 

Bình luận (0)
PT
Xem chi tiết
DH
16 tháng 1 2021 lúc 18:17

1) \(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)

\(A\)nhỏ nhất nên \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất nên \(\left|x-2016\right|+2018\)dương nhỏ nhất. 

mà \(\left|x-2016\right|+2018\ge2018\)

Dấu \(=\)khi \(x=2016\).

Vậy \(minA=1-\frac{1}{2018}=\frac{2017}{2018}\)đạt tại \(x=2016\).

2) \(x-2xy+y=0\)

\(\Leftrightarrow x\left(1-2y\right)+\frac{1}{2}-y-\frac{1}{2}=0\)

\(\Leftrightarrow\left(2x+1\right)\left(1-2y\right)=1=1.1=\left(-1\right).\left(-1\right)\)

Từ đây xét 2 trường hợp nha. Ra kết quả cuối cùng là: \(\left(x,y\right)\in\left\{\left(0,0\right),\left(1,1\right)\right\}\).

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
DD
Xem chi tiết
SA
4 tháng 7 2017 lúc 10:06

Vì 2016(x-1)2016 + 2017(y-1)2018 = 0

Mà    2016(x-1)2016  \(\ge\)0     ;     2017(y-1)2018 \(\ge\)0

=> 2016(x-1)2016 = 2017(y-1)2018 =0

=> x-1 = y-1 = 0

=> x=y=1

Bình luận (0)
NT
Xem chi tiết
NP
18 tháng 12 2017 lúc 21:44

\(\left(x-2\right)^{2016}+|y^2-9|^{2018}=0\)(*)

Vì \(\left(x-2\right)^{2016}\ge0\)và \(|y^2-9|^{2018}\ge0\)

nên (*)\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^{2016}=0\\|y^2-9|^{2018}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2=0\\y^2-9=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\\orbr{\begin{cases}y=3\\y=-3\end{cases}}\end{cases}}}}\)

Bình luận (0)
TN
Xem chi tiết
TN
12 tháng 12 2021 lúc 22:40

giúp mình nha

 

Bình luận (0)
NP
Xem chi tiết