Tìm số nguyên a sao cho:
\(2\left(\frac{1}{2}\right)^a< \left(\frac{1}{4}\right)^{20}\)
Tìm số nguyên a sao cho:
\(2\times\left(\frac{1}{2}\right)^a< \left(\frac{1}{4}\right)^{20}\)
Tìm số nguyên a sao cho:
\(2.\left(\frac{1}{2}\right)^a< \left(\frac{1}{4}\right)^{20}\)
Tìm số nguyên a sao cho:
\(2\left(\frac{1}{2}\right)^a< \left(\frac{1}{4}\right)^{20}\)
Tìm số nguyên a sao cho:
\(2\left(\frac{1}{2}\right)^a< \left(\frac{1}{4}\right)^{20}\)
Tìm số nguyên a sao cho:
\(2\left(\frac{1}{2}\right)^a< \left(\frac{1}{4}\right)^{20}\)
Tìm số nguyên a sao cho:
\(2\left(\frac{1}{2}\right)^a< \left(\frac{1}{4}\right)^{20}\)
Tính B=\(\frac{2.1+1}{\left[1.\left(1+1\right)^2\right]}+\frac{2.2+1}{\left[2.\left(2+1\right)^2\right]}+\frac{2.3+1}{\left[3.\left(3+1\right)^2\right]}+...+\frac{2.99+1}{\left[99.\left(99+1\right)^2\right]}\).
tìm số nguyên a sao cho \(a^4+4\)là số nguyên tố
1) Tính:\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)
2) Tìm tất cả các số nguyên tố x,y sao cho x2 - 6y2 - 1 = 0
3) Cho \(n\in N\)biết n-10; n+4. n+60 đều là số nguyên tố. CMR: n+90 là số nguyên tố
4) Tính nhanh
\(A=\left(\frac{7}{9}+1\right)\left(\frac{7}{20}+1\right)\left(\frac{7}{33}+1\right).....\left(\frac{7}{10800}+1\right)\)
Các bn giúp mk nhanh lên nhé
\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)
\(A=3-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)
\(A=3-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)
\(A=3-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)
\(A=3-\left(1-\frac{1}{8}\right)\)
\(A=3-\frac{5}{8}\)
\(A=\frac{19}{8}\)
Cho biểu thức:
P= \(\frac{a^2}{\left(a+b\right)\left(1-b\right)}-\frac{b^2}{\left(a+b\right)\left(1+a\right)}-\frac{a^2b^2}{\left(1+a\right)\left(1-b\right)}\)
a) Rút gọn P
b) Tìm cặp số nguyên (a;b) sao cho P=3
a) Điều kiện : \(a\ne-b;b\ne1;a\ne-1\)
\(P=\frac{a^2\left(1+a\right)-b^2\left(1-b\right)-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{a^3+a^2+b^3-b^2-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a+b\right)\left(a-b\right)-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{\left(a+b\right)\left(a^2-ab+b^2+a-b-a^2b^2\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{a^2+b^2-a^2b^2+a-b-ab}{\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{a^2\left(1-b^2\right)-\left(1-b^2\right)+a\left(1-b\right)+\left(1-b\right)}{\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{\left(1-b\right)\left(a^2+a^2b-1-b+a+1\right)}{\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{a^2+a^2b+a-b}{1+a}\)
\(P=\frac{a\left(a+1\right)+b\left(a-1\right)\left(a+1\right)}{1+a}\)
\(P=\frac{\left(a+1\right)\left(a+ab-b\right)}{1+a}\)
P = a + ab - b
b)
P = 3
<=> a + ab - b = 3
<=> a(b+1) - (b+1) +1 - 3 = 0
<=> (b+1)(a-1) = 2
Ta có bảng sau với a, b nguyên
b+1 | 1 | 2 | -1 | -2 |
a-1 | 2 | 1 | -2 | -1 |
b | 0 | 1 | -2 | -3 |
a | 3 | 2 | -1 | 0 |
so với đk | loại | loại |
Vậy (a;b) \(\in\){ (3; 0) ; (0; -3)}