tìm x và y biết y lớn hơn x
2^x +2^y=20
Tìm x,y∈Z,biết:
Tìm x,y∈Z,biết:
18*) (x-6)(3x-9)>0
19*) -2x(x+5)<0
20*) (2x-1)(6-x) >0
21*) (2-x)(x+7) <0
22*) |x+3|≤2
23*) (x + 3)(x2 + 2) > 0
24*) (x - 2)(-9 - x2 ) < 0
25*) |x + 25| + |5 - y|=0
26*) |x - 40 | + |x - y + 10 | lớn hơn hoặc bằng 0
27*) (x – 3)(3y + 2) = 7
28*) 5xy – 5x + y = 5
\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!
20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
21.
\((2-x)(x+7)< 0\)
TH1.
\(\orbr{\begin{cases}2-x>0\\x+7< 0\end{cases}\Rightarrow\orbr{\begin{cases}x< 2\\x>-7\end{cases}}\Rightarrow-7< x< 2}\)
TH2.
\(\orbr{\begin{cases}2-x< 0\\x+7>0\end{cases}\Rightarrow\orbr{\begin{cases}x>2\\x< -7\end{cases}}\Rightarrow2< x< -7}\)(vô lí)
Vậy \(-7< x< 2\) thì \((2-x)(x+7)< 0\)
a Tìm các sô nguyên tố x,y biết x2 x 993.y 2006b Tìm các số nguyên dương a,b biết a lớn hơn b là 5 và BCNN a,b 100
Tìm ba số x, y, z biết rằng x 2 = y 3 ; y 4 = z 5 và x + y - z = 20
A. x = 32; y = 48; z = 60
B. x = 16; y = 24; z = 30
C. x = 24; y = 36; z = 45
D. x = 8; y = 12; z = 15
cho(P):y=x^2 và (d): y=4x-2m+1 .tìm m để (d) và (P)cắt nhau tại 2 điểm phân biệt có các hoành độ giao điểm là x1;x2 thỏa mãn|x1|+|x2|+4x1x2 lớn hơn hoăc bằng 10
cho(P):y=x^2 và (d): y=4x-2m+1 .tìm m để (d) và (P)cắt nhau tại 2 điểm phân biệt có các hoành độ giao điểm là x1;x2 thỏa mãn|x1|+|x2|+4x1x2 lớn hơn hoăc bằng 10
cho(P):y=x^2 và (d): y=4x-2m+1 .tìm m để (d) và (P)cắt nhau tại 2 điểm phân biệt có các hoành độ giao điểm là x1;x2 thỏa mãn|x1|+|x2|+4x1x2 lớn hơn hoăc bằng 10
Tìm x,y biết:
A)2x×5x÷5y=20y và (2x-3)2=1
B)(4x-3)2+(y2-9)4=0
C)-(x+4)7-(y-5)8 lớn hơn hoặc bằng 0
a)(2x-3)2=1<=> \(\orbr{\begin{cases}2x-3=1\\2x-3=-1\end{cases}< =>\orbr{\begin{cases}2x=4\\2x=2\end{cases}}}\)\(< =>\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
x=2 =>22.52=20y.5y <=>100 = 100y <=> y=1
x=1 => 2.5= 20y.5y <=>10=100y <=>y = 1/2
b)(4x-3)2+(y2-9)2\(\ge0\)
dấu = sảy ra khi \(\hept{\begin{cases}4x-3=0\\y^2-9=0\end{cases}< =>\hept{\begin{cases}4x=3\\y^2=9\end{cases}}}\)\(\hept{\begin{cases}x=\frac{3}{4}\\y=\pm3\end{cases}}\)
c) <=> (y-5)8 \(\le-\left(x+4\right)^7\) (1)
(y-5)8 >=0 với mọi y nên -(x+4)7 \(\ge\left(y-5\right)^8\ge0\)<=> (x+4)7\(\le0< =>x+4\le0< =>x\le-4\)
Khi đó (1) <=> y-5\(\le\sqrt[8]{-\left(x+4\right)^7}\) <=> y\(\hept{\begin{cases}y\le5-\sqrt[8]{-\left(x+4\right)^7}\\x\le-4\end{cases}}\)
tìm số nguyên x ; y biết (x+1) nhân (y-2) lớn hơn 0 và (2x+4) nhân (6-2y) nhỏ hơn 0