Những câu hỏi liên quan
TT
Xem chi tiết
AH
2 tháng 1 2024 lúc 16:36

Lời giải:

Nếu $p$ chia hết cho 3 thì $p=3$. Khi đó $8p-1=8.3-1=23$ là snt (thỏa mãn đề).

$8p+1=8.3+1=25$ là hợp số.

Nếu $p$ chia $3$ dư $1$. Đặt $p=3k+1$ thì $8p+1=8(3k+1)+1=24k+9$ chia hết cho 3. Mà $8p+1>3$ nên $8p+1$ là hợp số.

Nếu $p$ chia $3$ dư $2$. Đặt $p=3k+2$. Khi đó $8p-1=8(3k+2)-1=24k+15\vdots 3$. Mà $8p-1>3$ nên không là snt (trái với điều kiện đề)

Vậy tóm lại $8p+1$ là hợp số.

Bình luận (0)
TQ
Xem chi tiết
LD
28 tháng 6 2017 lúc 16:56

là hợp số

Bình luận (0)
TQ
29 tháng 6 2017 lúc 14:30

bn Lưu Dung có thể tra lời cụ thể đc ko vậy!!!!!!!!!!!

Bình luận (0)
TQ
29 tháng 6 2017 lúc 17:21

trình bày ra đi bn!!!!!!!!!!!!!

Bình luận (0)
LT
Xem chi tiết
TN
Xem chi tiết
NH
10 tháng 4 2022 lúc 21:33

Bạn tham khảo nhé!

Với p=3 =>8p-1=23 (thỏa mãn)

                 8p+1=25(loại)

Với p khác 3 =>p không chia hết cho 3 =>8p không chia hết cho 3

mà (8p-1)(8p+1)là tích của 3 số tự nhiên liên tiếp 

Theo đề bài :8p-1 >3 (p thuộc N) =>8p-1 không chia hết cho 3 

=> 8p+1 chia hết cho 3

mà 8p+1>3 

=>8p+1 là hợp số 

Vậy 8p+1 là hợp số, 8p-1 là số nguyên tố.

Bình luận (0)
 Khách vãng lai đã xóa
MH
11 tháng 4 2022 lúc 1:56

TH1: \(p=3\) thì ta có \(8p-1=23\) là số nguyên tố, \(8p+1=25\) là hợp số.

TH2: \(p=3k+1\), ta có \(8p+1=8\left(3k+1\right)+1=24k+9⋮3\)

Vậy trong trường hợp này \(8p-1\) phải là số nguyên tố, còn \(8p+1\) là hợp số.

TH3: \(p=3k+2\), ta có \(8p-1=8\left(3k+2\right)-1=24k+15⋮3\)

Vậy trong trường hợp này \(8p+1\) phải là số nguyên tố, còn \(8p-1\) là hợp số.

Vậy khi \(p\) là số nguyên tố, nếu 1 trong 2 số \(8p-1;8p+1\) là số nguyên tố thì số còn lại là hợp số.

Bình luận (0)
DA
Xem chi tiết
LC
15 tháng 10 2015 lúc 12:55

Với p=3 =>8p-1=23 (thỏa mãn)

                 8p+1=25(loại)

Với p khác 3 =>p không chia hết cho 3 =>8p không chia hết cho 3

mà (8p-1)(8p+1)là tích của 3 số tự nhiên liên tiếp 

Theo đề bài :8p-1 >3 (p thuộc N) =>8p-1 không chia hết cho 3 

=> 8p+1 chia hết cho 3

mà 8p+1>3 

=>8p+1 là hợp số 

Vậy 8p+1 là hợp số, 8p-1 là số nguyên tố.

Bình luận (0)
NK
Xem chi tiết
LB
22 tháng 10 2016 lúc 20:51

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.

+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+Vậy p có dạng 3k+2

Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.

Vậy 4p+1 là hợp số,

Bình luận (0)
BD
22 tháng 10 2016 lúc 20:54

cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số  b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.

+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+Vậy p có dạng 3k+2

Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.

Vậy 4p+1 là hợp số,

Bình luận (0)
TN
Xem chi tiết
NK
Xem chi tiết
VS
22 tháng 10 2016 lúc 20:21

a)

p và 2p+1 nguyên tố 
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố 
* xét p # 3 
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3 
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3) 
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3 

kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3

Bình luận (0)
BD
22 tháng 10 2016 lúc 20:26

cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số 

b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số

c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số

a )

* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố 
* xét p # 3 
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3 
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3) 
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3 

kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3

nhé !

.........

còn câu b ,c chưa nghĩ ra

Bình luận (0)
NL
8 tháng 3 2019 lúc 21:04

Mình làm phần b hộ cho

vì p là số nguyên tố >3 => p có dạng 3k+1 hoặc 3k+2(k thuộc Z)

Vì p+4 cũng là số nguyên tố nên p#3k+2 vì nếu p=3k+2 thì p+4= 3k+2+4=3k+6 (là hợp số)

=> p=3k+1

Vậy p+8=3k+1+8=3k+9 (là hợp số)

k mình nha, ai k trả lời bên dưới mình sẽ k lại.

Bình luận (0)
TN
Xem chi tiết
b
19 tháng 12 2023 lúc 22:50

loading... 

Bình luận (0)
b
19 tháng 12 2023 lúc 22:51

loading... 

Bình luận (0)
NT
20 tháng 12 2023 lúc 8:13

Với p = 3, ta có:

 8p – 1 = 23 là số nguyên tố;

 8p + 1 = 25 không phải là số nguyên tố.

Với p ≠ 3, ta có: p không chia hết cho 3 nên 8p không chia hết cho 3.

 

Ta có 8p(8p – 1)(8p + 1) là tích của 3 số tự nhiên liên tiếp.

Suy ra 8p(8p – 1)(8p + 1) chia hết cho 3.

Lại có 8p – 1 > 3 (p  ℕ).

Suy ra 8p – 1 không chia hết cho 3.

Do đó 8p + 1 chia hết cho 3.

Mà 8p + 1 > 3, p  ℕ.

Suy ra 8p + 1 là hợp số.

Vậy 8p + 1 là hợp số; 8p - 1 là số nguyên tố.

Bình luận (0)