Những câu hỏi liên quan
NC
Xem chi tiết
RT
8 tháng 4 2016 lúc 19:59

gọi ƯCLN (2n+3;4n+8) là d

=> 2n+3 chia het cho d        ;       4n+8 chia hết cho d

=>2(2n+3) chia hết cho d

hay 4n+6 chia hết cho d

=>(4n+8)-(4n+6) chia hết cho d

           2 chia hết cho d

=> d thuộc {1;2}

*) xét d=2 thì 2n+3 chia hết cho 2

                   mà 2n chia hết cho 2 nhưng 3 không chia hết cho 2

=>d khác 2

=> d =1

vậy phân số 2n+3/4n+8 là phân số tối giản với mọi n thuôc N

Bình luận (0)
TN
8 tháng 4 2016 lúc 20:05

gọi d là UCLN(2n+3;4n+8)

ta có:

4n+8-2(2n+3) chia hết d

=>4n+8-4n+3 chia hết cho d

=>2 chia hết cho d

=>d thuộc {1,2}

mà ps trên tối giản khi d=1

Bình luận (0)
H24
Xem chi tiết
NB
24 tháng 5 2016 lúc 12:57

Gọi UCLN(n+1;2n+3) = d, ta có:

n+1 chia hết cho d

=> 2n+2 chia hết cho d

2n + 3 chia hết cho d

=> (2n+3)-(2n+2) chia hết cho d

=> 2n + 3 - 2n - 2 chia hết cho d

(2n-2n)+(3-2) chia hết cho d

1 chia hết cho d

=> d thuốc Ư(1) ={1;-1}

=> \(\frac{n+1}{2n+3}\) là phân số tối giản

Chúc bạn học tốt!hihi

Bình luận (0)
H24
24 tháng 5 2016 lúc 12:53

Vì ps n+1 / 2n + 3 là ps tối giản nên n +1 và 2n +3 là 2 số nguyên tố cùng nhau
Gọi d là ƯC của n +1 và 2n + 3
Ta có : (2n +3 ) - ( 2(n+1) ) chia hết cho d
   Hay : (2n +3 ) - ( 2n +2 ) chia hết cho d
 =>         2n +3 - 2n - 2 chia hết cho d
   =>                     1 chia hết cho d => d ϵ Ư ( 1 ) = + 1
Vậy n + 1 / 2n + 3 là phân số tối giản 

Bình luận (0)
NT
Xem chi tiết
NH
12 tháng 7 2017 lúc 12:33

Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\left(d\in N\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+4⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(d\in N;1⋮d\Leftrightarrow d=1\)

\(\LeftrightarrowƯCLN\left(2n+1;3n+2\right)=1\)

\(\Leftrightarrow\) Phân số \(\dfrac{2n+1}{3n+2}\) tối giản với mọi n

Bình luận (0)
MS
12 tháng 7 2017 lúc 13:02

Gọi \(d\)\(UCLN\left(2n+1;3n+2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(\Rightarrow6n+4-6n-3⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow\dfrac{2n+1}{3n+2}\) tối giản với mọi \(n\in N\rightarrowđpcm\)

Bình luận (0)
PP
Xem chi tiết
TL
Xem chi tiết
NH
Xem chi tiết
H24
12 tháng 4 2017 lúc 20:33

Gọi d là ƯCLN của 2n+1 và 3n+2

Ta có: 2n+1 chia hết cho d và 3n+2 chia hét cho d

=> (2n+1) - (3n+2) chia hết cho d

=> 3(2n+1) - 2(3n+2) chia hết cho d

=> -1 chia hét cho d

=> d C Ư(-1)=[-1;1]

Vậy \(\frac{2n+1}{3n+2}\)là phân số tối giản

k mình nha KHÁNH HUYỀN

Bình luận (0)
NL
7 tháng 4 2017 lúc 11:12

Gọi d là ƯCLN(2n+1, 3n+2)

suy ra: 2n+1  chia hết cho d

Bình luận (0)
PT
Xem chi tiết
MA
5 tháng 8 2016 lúc 9:29

mình pt làm câu sau thôi:

đặt UCLN của (2n+1, 3n+1) d

=> 2n+1 chia hết cho d và 3n+1 chia hết cho d

=> 6n+3 chia hết cho d và 6n+2 chia hết cho d 

=> 1chia hết cho d và d=1 

Bình luận (0)
DD
5 tháng 8 2016 lúc 9:33

bài tương tự nha bn

Chứng tỏ rằng : phân số 15n+1/30n+1 là phân số tối giản với n thuộc N?

gọi d là ƯC(15n+1;30n+1)
=>2.(15n+1) chia hết cho d và 30n+1 chia hết cho d
=>2.(15n+1)=30n+2
=>(30n+2)-(30n+1) cũng sẽ chia hết cho d
1 chia hết cho d
=> d=1
từ đó bạn sẽ biết thế nao chứ.

Bình luận (0)
TD
Xem chi tiết
NH
19 tháng 2 2017 lúc 9:17

goi d là ước chung cua 2n+1 và 2n+3(d là lẻ)

suy ra 2n+1 chia hết cho d

         2n+3 chia hết cho d

suy ra [2n+3-2n-1] chia hết cho d

2 chia hết cho d 

suy ra d thuộc 1:-1;2;-2

do d lẻ

suy ra d thuộc 1;-1

suy ra phân số 2n+1/2n+3 là phân số tối giản

mình nhanh nhất nhớ bấm đúng cho mình nha

Bình luận (0)
BD
19 tháng 2 2017 lúc 9:19

2n + 1 / 2n + 3 = 2n / 2n + 1/3

2n/2n chia hết cho 2n và bằng 1

1 + 1/3 = 4/3

4/3 là phân số tối giản 

=> 2n + 1 / 2n + 3 là phân số tối giản 

Bình luận (0)
NA
Xem chi tiết
HS
5 tháng 4 2019 lúc 20:16

a, Biểu thức A có \(5\inℤ,n\inℤ\). Để A là phân số thì ta có điều kiện là :\(n-1\ne0\Rightarrow n\ne-1\)

\(A=\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)

Để A là số nguyên \(\Leftrightarrow n-1\in\left\{\pm1;\pm5\right\}\)

n - 11-15-5
n206-4

b, Gọi d là ƯCLN\((n,n+1)\)

Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)

\(\Rightarrow(n+1)-n⋮d\)

\(\Rightarrow n-n+1⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy : ....

c, \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}< 1-\frac{1}{2}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}< \frac{50}{50}=1\)

\((đpcm)\)

Bình luận (0)