B=1+3+3^2+.........+3^30
a, tìm chữ số tận cùng của B.
b,chứng minh rằng B không phải số chính phương
Cho A=1!+2!+3!+4!+...+2015!
a,Tìm chữ số tận cùng của A
b,Chứng minh rằng A không phải số chính phương
c,Chứng minh rằng A là hợp số
cho S = 1 + 3 + 32 + 33 + ... + 330
a) tìm chữ số tận cùng sủa S
b) chứng minh rằng : S có phải là số chính phương không
a , Chứng minh rằng các số chính phương không có chữ số tận cùng là 2 , 3 , 7, 8
b , các số sau có phải là số chính phương không :
126 ^2 + 1 ; 1001^ 2 -3 ; 11 + 11^ 2 + 11^3 ; 10^10 + 7 ; 51 ^51 +1
127^2; 999^2; 33^4;17^10;52^51
a) Xét các số có các chữ số tận cùng lần lượt là 0 ; 1 ; 2 ; 3 ; ... ; 9 và lấy các con số cụ thể là 0 ; 1 ; 2 ; .... ; 9
Ta có :
02 = 0
12 = 1
22 = 4
32 = 9
42 = 16
52 = 25
62 = 36
72 = 49
82 = 64
92 = 81
Qua đó ta thấy 1 số chính phương không thể có chữ số tận cùng là 2 ; 3 ; 7 và 8
b) Vì 1262 có chữ số tận cùng là 6
=> 1262 + 1 có chữ số tận cùng là 7 ( không phải số chính phương )
Ta có 10012 có chữ số tận cùng là 1
=> 10012 - 3 có chữ số tận cùng là 8 ( không phải số chính phương )
Ta có 112 và 113 đều có chữ số tận cùng là 1
=> 11 + 112 + 113 có chữ số tận cùng là 3 ( không là số chính phương )
Ta có 1010 có chữ số tận cùng là 0
=> 1010 + 7 có chữ số tận cùng là 7 ( không à số chính phương )
Ta có 5151 có chữ số tận cùng là 1
=> 5151 + 1 có chữ số tận cùng là 2 ( không là số chính phương )
Cho : S=3^0+3^1+3^2+....+3^330
a,tìm chữ số tận cùng của S
b,chứng tỏ rằng s không phải là số chính phương
Ai nhanh mình like cho mình đang gấp
cho S = 1 + 3 + 32 + 33 + 34 +...+330
a) tìm chữ số tận cùng của S
b) chứng minh rằng : S có phải là số chinh phương không ?
\(a,\\ Có.3A=3\left(1+3+3^2+...+3^{30}\right)=3+3^2+3^3+...+3^{31}\\ Mà.A=1+3+3^2+3^3+...+3^{30}\\ \Rightarrow2A=3^{31}-1\\ 2A\equiv3^{31}-1\left(Mod.10\right)\\ \equiv3^{4\cdot7+3}-1\\ \equiv1+27-1\equiv7\)
Phần gì không hiểu thì hỏi nhé
Cho S= 1+3+3^2+3^3+.......+3^30
a> Tìm chữ số tận cùng của S
b> Hãy cho biết S có phải là số chính phương ko và chứng minh
Câu 1 : Chứng minh một số chính phương có tận cùng là 0 thì phải tận cùng bằng chẵn chữ số 0.
Câu 2 : Chứng minh một số chính phương có số ước là một số lẻ và ngược lại .
Câu 3 : Chứng minh rằng một số chính phương có tận cùng là 5 thì chữ số hàng chục là chữ số 2.
Câu 4 : Chứng minh rằng một số chính phương có tận cùng là 6 thì chữ số hàng chục là chữ số lẻ.
Câu 5 : Chứng minh rằng một số chính phương có tận cùng là 4 thì chữ số hàng chục là chữ số chẵn.
Cho A = 1! +2! +3! +4! +5! +6! + ...+2015!
- Tìm chữ số tận cùng của A
- Chứng minh A không phải là số chính phương
- Chứng minh A là hợp số .
Cho S = 1 + 3 + 3\(^{^2}\)+ 3\(^3\) + ... + 3\(^{30}\)
a) Tìm chữ số tận cùng của S
b) Chứng minh rằng : S không phải là số chính phương.
Giải ra dùm mình luôn nha!