1111111111 + 9999999999
(1111111111/2222222222+9999999999/2222222222+5555555555/2222222222+5555555555/2222222222)+90=?
\(\left(\frac{1111111111}{2222222222}+\frac{9999999999}{2222222222}+\frac{5555555555}{2222222222}+\frac{5555555555}{2222222222}\right)\) \(+\) \(90\)
\(=\) \(10+90\)
\(=\) \(100\)
1111111111111111111/22222222222222222222222222222+ggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
lllllllllllllllllllllllllllllllllllllllllllllllllllllll
l
lllllllllllllllll
l
l
l
l
ll
tính tổng
9+99+999+9999+...+9999999999
tương tự 1+11+111+1111+...+1111111111
ta co:A=9+9+999+..........+9999999999
A=10-1+100-1+1000-1+...........+10000000000-1(10 so 0)
A=(10+100+1000+...+10000000000)-(1+...+1)
A=(1+10+100+1000+........+10000000000)-(1+1+........+1)
A=11111111111-11
A=11111111100
1111111111 + 1111111111 + 1111111111 + 1111111111 + 1111111111
cho bieu thuc A+9999999999/2-9999999999/3-9999999999/6.so sánh A với 0
\(A=\frac{\text{9999999999}}{2}-\frac{\text{9999999999}}{3}-\frac{\text{9999999999}}{6}\)
\(A=\text{9999999999}\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
\(A=\text{9999999999}.0\)
\(A=0\)
Vậy A = B
A = 0 nhé bạn tôi thề là đúng luôn
bạn ko cần cảm ơn đâu cho 1 k là ok
Cho biểu thức : A=999999999/2+9999999999/3+9999999999/6
\(\frac{9999999999}{2}+\frac{9999999999}{3}+\frac{9999999999}{6}\)
\(=9999999999\cdot\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)\)
\(=9999999999\cdot1\)
\(=9999999999\)
1111111111+1111111111
1111111111+1111111111=2222222222
1111111111+1111111111
1111111111+1111111111=2222222222
1111111111 + 1111111111
Cho biểu thức: \(A=\frac{9999999999}{2}-\frac{9999999999}{3}-\frac{9999999999}{6}\)
So sánh A với số 0 ?
Nhân xét biểu thức A, ta thấy:
\(\frac{9999999999}{2}>\frac{9999999999}{3}>\frac{9999999999}{6}>0\)
=> \(A>0\left(đpcm\right)\)
ta có 9999999999/2=9999999999*3/2*3
9999999999/3=9999999999*2/3*2
suy ra 9999999999*3/2*3 - 9999999999*2/3*2=9999999999*3-9999999999*2/6=9999999999/6
suy ra A=9999999999/6-9999999999/6=0
vậy A=0
\(A=9999999999.\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
\(A=9999999999.0=0\)
Vậy A=0