tìm tích của 96 số hạng đầu tiên của dãy
\(1\frac{1}{3};1\frac{1}{8};1\frac{1}{15};1\frac{1}{24};1\frac{1}{35};...\)
Tìm tích của 98 số hạng đầu tiên của dãy :
\(1\frac{1}{3};1\frac{1}{8};1\frac{1}{15};1\frac{1}{24};1\frac{1}{35}...\)
tìm tích của 98 số hạng đầu tiên của dãy
\(1\frac{1}{3};1\frac{1}{8};1\frac{1}{15};1\frac{1}{24};...\)
Cho dãy số sau : \(1\frac{1}{3};1\frac{1}{8};1\frac{1}{15};1\frac{1}{24};1\frac{1}{35};...\)
Tìm tích của 98 số hạng đầu tiên của dãy trên.
Viết lại dãy phân số: \(\frac{4}{3};\frac{9}{8};\frac{16}{15};\frac{25}{24};\frac{36}{35};...\) hay \(\frac{2^2}{1.3};\frac{3^2}{2.4};\frac{4^2}{3.5};\frac{5^2}{4.6};\frac{6^2}{5.7};...\)
=> Số hạng thứ 98 là : \(\frac{99^2}{98.100}\)
=> Tích cần tính = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}.\frac{6^2}{5.7}....\frac{99^2}{98.100}=\frac{\left(2.3.4...99\right)^2}{\left(1.2.3...98\right).\left(3.4.5....100\right)}=\frac{99.2}{100}=\frac{99}{50}\)
Các số hạng đc viết dưới dạng: \(\frac{2^2}{1.3};\frac{3^2}{2.4};\frac{4^2}{3.5};.........\)
=> Số hạng thứ 98 có dạng \(\frac{99^2}{98.100}\)
Vậy ta cần tính tích:
A = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}........\frac{99^2}{98.100}\)
= \(\frac{\left(2.3.4..........99\right)\left(2,3,4,,,,,,,,,,,,99\right)}{\left(1.2.3.......98\right)\left(3.4.5.........100\right)}\)
=\(\frac{99.2}{1.100}=\frac{99}{50}\)
Tích của 98 số hạng đầu tiên của dãy trên là \(\frac{99}{50}\).
Cho dãy số viết theo quy luật:
\(1\frac{1}{2};1\frac{1}{5};1\frac{1}{9};1\frac{1}{14};1\frac{1}{20};..................\)
TÌM TÍCH CỦA 100 SỐ HẠNG ĐẦU TIÊN CỦA DÃY
o mau cu cong tang dan
+3;+4;+5;+6;+7;+8;+..........................
Cho dãy số: \(1\frac{1}{3};1\frac{1}{3^2};1\frac{1}{3^4};1\frac{1}{3^4};1\frac{1}{3^8};1\frac{1}{3^{16}};.......\)
a) Tìm số hạng tổng quát của dãy
b) Goi A là tích của 11 số hạng đầu tiên của dãy . Chứng minh \(\frac{1}{3-2A}\)là số tự nhiên
c) Tìm chư số tận cùng của B=\(\frac{3}{3-2A}\)
có ai giúp mình giải bài này với
Cho dãy số \(1\frac{1}{3};1\frac{1}{8};1\frac{1}{15};1\frac{1}{24};1\frac{1}{35};...\)Tích của 2015 số hạng đầu tiên của dãy là...
Ta thấy: \(1\frac{1}{3}=\frac{4}{3}=\frac{2.2}{1.3}\)
\(1\frac{1}{8}=\frac{9}{8}=\frac{3.3}{2.4}\)
\(1\frac{1}{15}=\frac{16}{15}=\frac{4.4}{3.5}\)
\(...\)
\(1=\frac{4064256}{4064255}=\frac{2016.2016}{2015.2017}\)
Tích 2015 số đầu tiên của dãy là:
\(\frac{2.2}{1.3}.\frac{3.3}{2.4}...\frac{2016.2016}{2015.2017}\)
\(=\frac{2.2.3.3...2016.2016}{1.3.2.4...2015.2017}\)
Thấy tử và mẫu có 1 số thừa số chung nên ta rút gọn là:
=2.2.3.3...2016.2016/1.3.2.4...2015.2017
=2/2017
Ta có:\(1\frac{1}{3}=\frac{4}{3}\frac{2,2}{1,3}\)
\(1\frac{1}{8}=\frac{9}{8}=\frac{3,3}{2,4}\)
\(1\frac{1}{15}=\frac{10}{15}=\frac{4,4}{3,5}\)
\(1\frac{4064256}{4064256}=\frac{2016,2016}{2015,2017}\)
Tích 2015 số đầu tiên của số là:
\(\frac{2,2}{1,3},\frac{3,3}{2,4}......\frac{2016,2016}{2015,2017}\)
\(=\frac{2,2,3,3.....2016,2016}{2,3,2,4.....2015,2017}\)
Thấy tử và mẫu
có một thừa số chung nên ta rút gọn là:
=2/2017
Cho dãy số: \(1\frac{1}{3};1\frac{1}{8};1\frac{1}{15};1\frac{1}{24};1\frac{1}{35};...\)
a) Hỏi số hạng thứ 10 của dãy số trên là số nào? ( dạng hỗn số )
b) Gọi A là tích 10 số hạng đầu tiên của dãy. Tính 6A.
\(a.1\frac{1}{120}\)
nha bạn
Nguyễn Anh Kim Hân\(a.1\frac{1}{120}\)
k mk nha Nguyễn Anh Kim Hân
cái biểu tượng hình cái chuông ghi là Quản lý thông báo của Online math là sao vậy các bn
Cho dãy số \(1\frac{1}{3};1\frac{1}{8};1\frac{1}{15};1\frac{1}{24};1\frac{1}{35};....................\)
Tích của 2015 số hạng đầu tiên của dãy là ......
cho dãy số \(1\frac{1}{3};1\frac{1}{3^2};1\frac{1}{3^3};...\)
a) Gọi A là tích của 11 số hạng đầu tiên của dãy. Chứng minh: \(\frac{1}{3-2A}\)
b) Tìm chữ số tận cùng của \(B=\frac{3}{3-2A}\)