Những câu hỏi liên quan
PQ
Xem chi tiết
CP
Xem chi tiết
NH
17 tháng 4 2016 lúc 8:16

kết quả là 1/3

Bình luận (0)
TM
29 tháng 4 2018 lúc 16:21

ta có

6=2×3

10=2×5

15=3×5

➡2^2×3^2×5^2=900

=150/900+90/900+60/900

=150+90+60/900=300/900=1/3

mk chắc chắn đúng 100% lun. cho mk xin 1 k nha bạn.

Bình luận (0)
NH
Xem chi tiết
MT
17 tháng 4 2016 lúc 8:18

\(\frac{1}{2}\) E= \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)

\(\frac{1}{2}\) E = \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\)

\(\frac{1}{2}E\) = \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{8}-\frac{1}{9}\)

\(\frac{1}{2}E\) = \(\frac{1}{2}-\frac{1}{9}\)

\(\frac{1}{2}E\) =\(\frac{7}{18}\)

=> E = \(\frac{7}{9}\)

Bình luận (0)
H24
17 tháng 4 2016 lúc 8:20

E=\(\frac{1}{3}+\frac{1}{6}+....+\frac{1}{28}+\frac{1}{36}\)

\(\frac{1}{2}E=\frac{1}{6}+\frac{1}{12}+...+\frac{1}{56}+\frac{1}{72}\)

\(\frac{1}{2}E=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}+\frac{1}{8.9}\)

\(\frac{1}{2}E=\frac{3-2}{2.3}+\frac{4-3}{3.4}+...\frac{8-7}{7.8}+\frac{9-8}{8.9}\)

\(\frac{1}{2}E=\frac{3}{2.3}-\frac{2}{2.3}+\frac{4}{3.4}-\frac{3}{3.4}+...+\frac{8}{7.8}-\frac{7}{7.8}+\frac{9}{8.9}-\frac{8}{8.9}\)

\(\frac{1}{2}E=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)

\(\frac{1}{2}E=\frac{1}{2}-\frac{1}{9}=\frac{7}{18}\)

E=\(\frac{7}{18}:\frac{1}{2}=\frac{7}{9}\)

Bình luận (0)
LN
Xem chi tiết
ST
10 tháng 7 2018 lúc 17:26

\(B=-1-\frac{1}{3}-\frac{1}{6}-...-\frac{1}{1225}\)

\(=-2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\right)\)

\(=-2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(=-2\left(1-\frac{1}{50}\right)=-2\cdot\frac{49}{50}=-\frac{49}{25}\)

Bình luận (0)
SK
10 tháng 7 2018 lúc 20:54

\(B=-1-\frac{1}{3}-\frac{1}{6}-\frac{1}{10}-\frac{1}{15}-...-\frac{1}{1225}\)

\(B=-2\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{49\cdot50}\right)\)

\(B=-2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(B=-2\left(1-\frac{1}{50}\right)\)

\(B=-2\cdot\frac{49}{50}\)

\(B=-\frac{49}{25}\)

Bình luận (0)
TP
Xem chi tiết
LS
Xem chi tiết
TT
Xem chi tiết
HV
Xem chi tiết
TA
Xem chi tiết