Những câu hỏi liên quan
BC
Xem chi tiết
KN
1 tháng 8 2019 lúc 9:07

Đặt \(A=2.2^2+3.2^3+4.2^4+5.2^5+...+n.2^n\)

\(\Rightarrow2A=2.2^3+3.2^4+4.2^5+5.2^6+...+n.2^{n+1}\)

\(\Rightarrow2A-A=2.2^3+3.2^4+4.2^5+5.2^6+...+n.2^{n+1}\)

\(-2.2^2-3.2^3-4.2^4-5.2^5-...-n.2^n\)

\(A=n.2^{n+1}-2^3-\left(2^3+2^4+...+2^n\right)\)

Đặt \(M=\left(2^3+2^4+...+2^n\right)\)

\(\Rightarrow2M=\left(2^4+2^5+...+2^{n+1}\right)\)

\(\Rightarrow M=2^{n+1}-2^3\)

\(\Rightarrow A=n.2^{n+1}-2^3-2^{n+1}+2^3\)

\(\Rightarrow A=\left(n-1\right)2^{n+1}=2^{n+10}\)

\(\Rightarrow\left(n-1\right)=2^9\)

\(\Rightarrow n=513\)

Bình luận (0)
BC
Xem chi tiết
H24
1 tháng 8 2019 lúc 10:42

Đặt \(A=2.2^2+3.2^3+4.2^4+...+n.2^n=2^{n+10}\)

\(\Rightarrow2A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\)

\(\Rightarrow2A-A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}-2.2^2-3.2^3-4.2^4-...-n.2^n\)

\(\Leftrightarrow A=-2.2^2+\left(2.2^3-3.2^3\right)+\left(3.2^4-4.2^4\right)+...+[\left(n-1\right)2^n-n.2^n]+n.2^{n+1}\)

\(\Leftrightarrow A=-2.2^2-2^3-2^4-...-2^n+n.2^{n+1}\)

\(\Leftrightarrow A=-2^3-\left(2^4-2^3\right)-\left(2^5-2^4\right)-...-\left(2^{n+1}-2^n\right)+n.2^{n+1}\)

\(\Leftrightarrow A=-2^3-2^4+2^3-2^5+2^4-...-2^{n+1}+2^n+n.2^{n+1}\)

\(\Leftrightarrow A=-2^{n+1}+n.2^{n+1}\)

\(\Leftrightarrow A=2^{n+1}\left(n-1\right)\)

Mà \(A=2^{n+10}=2^{n+1}.2^9=2^{n+1}.512\)

\(\Rightarrow n-1=512\)

\(\Rightarrow n=513\)

Bình luận (0)
DC
Xem chi tiết
NT
Xem chi tiết
NH
30 tháng 10 2015 lúc 19:38

Đặt A = 2.22 + 3.23 + 4.24 + ... + n.2n

2A = 2.23 + 3.24 + 4.25 + ... + n.2n+1

2A - A = (2.23 - 3.23) + (3.24 - 4.24) + ... + [(n-1).2n - n.2n] + n.2n+1

A = -23 - 24 - ... - 2n + n.2n+1 - 2.22

A = n.2n+1 - (23 + 24 + 25 + ... + 2n) - 23

Đặt B = 23 + 24 + ... + 2n

2B = 24 + 25 + ... + 2n+1

2B - B = 24 + 25 + ... + 2n+1 - 23 - 24 - 2n

B = 2n+1 - 23

Mà A = n.2n+1 - (23 + 24 + 25 + ... + 2n) - 23

=> A = n.2n+1 - B - 23

=> A = n.2n+1 - (2n+1 - 23) - 23

A = n.2n+1 - 2n+1 + 23 - 23

A = (n-1).2n+1

Mà 2.22+ 3.23 + 4.24 + 5.25 + · · · + n.2n = 2n+10

=> A = 2n+10

=> (n-1).2n+1 = 2n+10

(n-1) = 2n+10 : 2n+1

n-1 = 29

n = 512 + 1

n = 513

Bình luận (0)
NT
30 tháng 10 2015 lúc 19:41

Nhận tớ một lạy Hải ạ!!! :)

Bình luận (0)
NK
26 tháng 7 2016 lúc 9:49

Con lậy má .

Bình luận (0)
NH
Xem chi tiết
LC
25 tháng 10 2015 lúc 13:27

Đặt \(A=2.2^2+3.2^3+4.2^4+...+n.2^n\)

=>\(2.A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\)

=>\(A-2A=2.2^2+3.2^3+4.2^4+...+n.2^n-2.2^3-3.2^4-4.2^5-...-n.2^{n+1}\)

=>\(-A=2.2^2+\left(3.2^3-2.2^3\right)+\left(4.2^4-3.2^4\right)+...+\left(n.2^n-\left(n-1\right).2^n\right)-n.2^{n+1}\)

=>\(-A=2^3+2^3+2^4+...+2^n-n.2^{n+1}\)

=>\(-A=2^3+\left(2^3+2^4+...+2^n\right)-n.2^{n+1}\)

=>\(A=n.2^{n+1}-2^3-\left(2^3+2^4+...+2^n\right)\)

Đặt \(B=2^3+2^4+...+2^n\)

=>\(2.B=2^4+2^5+...+2^{n+1}\)

=>\(2.B-B=2^4+2^5+...+2^{n+1}-2^3-2^4-...-2^n\)

=>\(B=2^{n+1}-2^3\)

Lại có:\(A=n.2^{n+1}-2^3-\left(2^3+2^4+...+2^n\right)\)

=>\(A=n.2^{n+1}-2^3-B\)

=>\(A=n.2^{n+1}-2^3-\left(2^{n+1}-2^3\right)\)

=>\(A=n.2^{n+1}-2^3-2^{n+1}+2^3\)

=>\(A=n.2^{n+1}-2^{n+1}\)

=>\(A=\left(n-1\right).2^{n+1}\)

Mà \(A=2.2^2+3.2^3+4.2^4+...+n.2^n=2^{n+10}\)

=>\(\left(n-1\right).2^{n+1}=2^{n+10}\)

=>\(n-1=2^{n+10}:2^{n+1}\)

=>\(n-1=2^{n+10-n-1}\)

=>\(n-1=2^9\)

=>\(n-1=512\)

=>\(n=513\)

Vậy n=513

Bình luận (0)
YK
25 tháng 10 2015 lúc 13:34

dài thế hình như cô giáo lớp mình giải còn ngắn hơn thế này

Bình luận (0)
NH
Xem chi tiết
BL
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết