Những câu hỏi liên quan
H24
Xem chi tiết
TD
Xem chi tiết
LP
27 tháng 3 2023 lúc 8:47

a) Theo đề bài, ta có \(\widehat{DEC}=\widehat{DFC}=90^o\) \(\Rightarrow\) Tứ giác CDEF nội tiếp do có 2 đỉnh kề nhau E, F cùng nhìn cạnh CD dưới góc vuông. \(\Rightarrow\widehat{DFE}=\widehat{DCE}=\widehat{DCB}=\widehat{DAB}\) (do tứ giác ABDC nội tiếp nên \(\widehat{DCB}=\widehat{DAB}\)). Từ đó suy ra đpcm.

b) Có \(\widehat{KBD}=\widehat{ACD}\) (do tứ giác ABDC nội tiếp) và \(\widehat{ACD}=\widehat{KED}\) (do tứ giác CDEF nội tiếp) \(\Rightarrow\widehat{KBD}=\widehat{KED}\) \(\Rightarrow\) Tứ giác DKBE nội tiếp. 

Mặt khác, \(\widehat{BDA}=\widehat{BCA}=\widehat{EDF}\) và \(\widehat{BAD}=\widehat{BCD}=\widehat{EFD}\)

\(\Rightarrow\Delta DBA~\Delta DEF\left(g.g\right)\)\(\Rightarrow\dfrac{DA}{DF}=\dfrac{DB}{DE}\) \(\Rightarrow DA.DE=DB.DF\)

c) \(\Delta DBA~\Delta DEF\Rightarrow\dfrac{DB}{DE}=\dfrac{AB}{EF}=\dfrac{2BI}{2EJ}=\dfrac{BI}{EJ}\) . Lại có \(\widehat{DBI}=\widehat{DEJ}\) nên \(\Delta DBI~\Delta DEJ\left(c.g.c\right)\) \(\Rightarrow\widehat{DIB}=\widehat{DJE}\) hay \(\widehat{DIK}=\widehat{DJK}\) \(\Rightarrow\) Tứ giác DJIK nội tiếp \(\Rightarrow\) \(\widehat{DJI}=180^o-\widehat{DKI}\) . Lại có \(\widehat{DKI}=180^o-\widehat{BED}=90^o\) (do tứ giác DKBE nội tiếp) \(\Rightarrow\widehat{DJI}=90^o\) \(\Rightarrow\) đpcm

Bình luận (0)
H24
6 tháng 5 2024 lúc 12:36

Vbh

Bình luận (0)
PK
Xem chi tiết
TN
4 tháng 9 2016 lúc 9:59

Câu hỏi của Nguyễn Ngọc Sơn Lâm - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)
LC
Xem chi tiết
PB
Xem chi tiết
NQ
Xem chi tiết
TD
Xem chi tiết
KS
7 tháng 3 2023 lúc 15:07

a)

Xét \(\Delta AOD\) và \(\Delta COB\) có: \(\left\{{}\begin{matrix}OA=OC\left(gt\right)\\\widehat{O}:chung\\OB=OD\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AOD=\Delta COB\left(c.g.c\right)\)

\(\Rightarrow AD=BC\left(\text{2 cạnh tương ứng}\right)\left(\text{đpcm}\right)\)

b) 

Nối A với C

Ta có: \(\left\{{}\begin{matrix}OA=OC\\OB=OD\end{matrix}\right.\left(gt\right)\Rightarrow OA-OB=OC-OD\)

Hay \(AB=CD\)

Xét \(\Delta ABC\) và \(\Delta CDA\) có: \(\left\{{}\begin{matrix}AB=CD\left(cmt\right)\\AC:chung\\AD=BC\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta ABC=\Delta DCA\left(c.c.c\right)\)

\(\Rightarrow\widehat{ABC}=\widehat{CDA}\left(\text{2 góc tương ứng}\right)\)

Vì \(\Delta AOD=\Delta COB\left(cmt\right)\Rightarrow\widehat{A}=\widehat{C}\left(\text{2 góc tương ứng}\right)\)

Xét \(\Delta ABE\) và \(\Delta CDE\) có: \(\left\{{}\begin{matrix}\widehat{ABC}=\widehat{CDA}\left(cmt\right)\\AB=CD\left(cmt\right)\\\widehat{A}=\widehat{C}\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta ABE=\Delta CDE\left(g.c.g\right)\left(\text{đpcm}\right)\)

c) Vì \(\Delta ABE=\Delta CDE\left(cmt\right)\Rightarrow AE=CE\left(\text{2 cạnh tương ứng}\right)\)

Xét \(\Delta AOE\) và \(\Delta COE\) có: \(\left\{{}\begin{matrix}OA=OC\left(gt\right)\\\widehat{A}=\widehat{C}\left(cmt\right)\\AE=CE\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AOE=\Delta COE\left(c.g.c\right)\\ \Rightarrow\widehat{AOE}=\widehat{COE}\left(\text{2 góc tương ứng}\right)\)

`=> OE` là phân giác của \(\widehat{xOy}\) (đpcm)

Bình luận (1)
VA
18 tháng 4 2023 lúc 19:51

a) Xét △��� và △���, có

��=�� (giả thiết);

�^ chung;

��=�� (giả thiết).

Do đó △���=△��� (c.g.c)

⇒��=�� (hai cạnh tương ứng).

b) Do ��=�� và ��=�� nên ��=��.

Mà △���=△��� (chứng minh trên)

⇒���^=���^���^=���^ (hai góc tương ứng)

Mặt khác ���^+���^=���^+���^=180∘

⇒���^=���^

Xét △��� và △��� có

���^=���^

Bình luận (0)
ND
20 tháng 4 2023 lúc 21:26

a) Xét △��� và △���, có

��=�� (giả thiết);

�^ chung;

��=�� (giả thiết).

Do đó △���=△��� (c.g.c)

⇒��=�� (hai cạnh tương ứng).

b) Do ��=�� và ��=�� nên ��=��.

Mà △���=△��� (chứng minh trên)

⇒���^=���^���^=���^ (hai góc tương ứng)

Mặt khác ���^+���^=���^+���^=180∘

⇒���^=���^

Xét △��� và △��� có

���^=���^

Bình luận (0)
PA
Xem chi tiết
H24
1 tháng 8 2016 lúc 20:16

Giả sử a>b( trường hợp a<b chứng minh tương tự). Chú ý rằng nếu hai lũy thừa bằng nhau có cơ số( là số tự nhiên) khác nhauthì lũy thừa nào có cơ số nhỏ hơn sẽ có số mũ lớn hơn. Xong tiếp tục giải là ra

Bình luận (0)
NN
Xem chi tiết
H24
22 tháng 1 2020 lúc 11:44

Bài 1 :                                                         Bài giải

Ta có : 

\(A=7+7^2+7^3+...+7^8\)

\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)

\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)

\(A=7\cdot400+7^4\cdot400\)

\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)

\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)

Bình luận (0)
 Khách vãng lai đã xóa
Me
22 tháng 1 2020 lúc 11:44

Bài 1 :                                                         Bài giải

Ta có : 

\(A=7+7^2+7^3+...+7^8\)

\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)

\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)

\(A=7\cdot400+7^4\cdot400\)

\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)

\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
22 tháng 1 2020 lúc 11:51

Bài 2 :                                                       Bài giải

a, \(\left(x+5\right)\left(y-2\right)=-6\)

\(\Rightarrow\text{ }\left(x+5\right)\text{ ; }\left(y-2\right)\inƯ\left(-6\right)\)

Ta có bảng : 

x + 5 - 2- 3- 1- 6
y - 23261
x- 7- 8- 6- 11
y5483

Vậy \(\left(x\text{ ; }y\right)=\left(-7\text{ ; }5\right)\text{ ; }\left(-8\text{ ; }4\right)\text{ ; }\left(-6\text{ ; }8\right)\text{ ; }\left(-11\text{ ; }3\right)\)

Bình luận (0)
 Khách vãng lai đã xóa