cho a^2 +ab + b^2 chia hết cho 10. CMR (a^3 - b^3) chia hết cho 1000
chứng minh rằng nếu ( a2+ab+b2) chia hết cho 10 thì ( a3-b3) chia hết cho 1000
bài 1: cho A=3 + 3^2 + 3^3 +......+3^60. Chứng minh rằng
a)A chia hết 4 b)A chia hết 13
bài 2: CMR: (12a + 36b) chia hết 12 với a,b thuộcN
bài 3:cho a,b,c thuộc N và (111a + 23b) chia hết 12
CMR: (9a + 13b) chia hết cho 12
bài 4: CMR
a) 5 + 5^2 + 5^3 chia hết cho 5
b) 2^9 + 2^10 + 2^11 + 2^12 chia hết cho 15
c) 10^11 + 8 chia hét cho 3
d) 3^20 + 3^19 - 3^18 chia hết 11
bài 5: cho A = 8n + 111....1( n chữ số 1)
CMR: A chia hết 9
b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)
=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)
=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)
=3+3^2.13+3^5.13+.........+3^58.13
=3.13.(3^2+3^5+....+3^58)
vi tich tren co thua so 13 nen tich do chia het cho 13
=
bai1
a) A=(31+32)+(33+34)+...+(359+360)
=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)
=3^1.(1+3)+...+3^59.(1+3)
=3^1.4+....+3^59.4
=4.(3^1+...+3^59)
vi tich tren co thua so 4 nen tich do chia het cho 4
Bài 2:(12a + 36b) = (12a + 12 x 3 x b) = 12( a + 3b)chia hết cho 12
Bài 10: CMR: 3n^4-14n^3+21n^2-10n chia hết cho 24 (với mọi n thuộc N)
Bài 11: CMR: m^3+20m chia hết cho 48 với mọi m là số chẵn
Bài 12: a^5-5a^3+4a chia hết cho 120 với mọi a thuộc Z
Bài 13: m, n thuộc N sao cho 24m^4+1=n^2
CMR: mn chia hết cho 5
Bài 14: 17^19+19^17 chia hết cho 18
Bài 15: Cho A=1^3+2^3+3^3+...+100^3
B=1+2+3+...+100
CMR: A chia hết cho B
Bài 1) Cmr nếu ab+cd+eg chia hết cho 11 thì abcdeg chia hết cho 11
Bài 2)Tìm a biết 20a20a20a chia hết cho 7
Bài 3) Cho abc + deg chia hết cho 37 . cmr abcdeg chia hết cho 37
Bài 4) Cho abc -deg chia hết cho 7 .cmr abcdeg chia hết cho 7
Bài 5) Tím STN a và b ,sao cho a chia hết cho b và b chia hết cho a
Làm đúng 3 bài mình cho 3 like
CÂU1:
a) từ 1-1000 có bao nhiêu số chia hết cho 5
b) tổng 1015+8 có chia hết cho 9 và 2 không?
c) hiệu 102010-4 có chia hết cho 3 không ?
d) tổng 102010+8 có chia hết cho 9 không?
e) tổng 102010+14 có chia hết cho 3 và 2 không?
CÂU2: a) chứng tỏ rằng ab(a+b)chia hết cho 2 (a;b thuộc N)
a,cho A=2+2^2+2^3+......+2^2004
CMR: Achia hết cho 7;15;3
b,cho S=3+3^2+3^3+3^4+....+3^1000
CMR:Schia hết cho 12 và S chia hết cho39
+ ) A = 2 + 22 + 23 + 24 + ... + 22003 + 22004
=> A = ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 22003 + 22004 )
=> A = 2.( 1 + 2 ) + 23.( 1 + 2 ) + ... + 22003.( 1 + 2 )
=> A = 2.3 + 23.3 + .... + 22003.3
=> A = 3.( 2 + 23 + 25 + .... + 22001 + 22003 )
Vì 3 ⋮ 3 => A ⋮ 3 ( ĐPCM )
+ ) A = 2 + 22 + 23 + 24 + 25 + 26 + ..... + 22002 + 22003 + 22004
=> A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + .... + ( 22002.22003.22004 )
=> A = 2.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + ... + 22002.( 1 + 2 + 2.2 )
=> A = 2.7 + 24.7 + 27.7 + .... + 22002.7
=> A = 7.( 2 + 24 + 27 + ... + 22002 )
Vì 7 ⋮ 7 => A ⋮ 3 ( ĐPCM )
+ ) A = 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + .... + 22001 + 22002 + 22003 + 22004
=> A = ( 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 ) + .... + ( 22001 + 22002 + 22003 + 22004 )
=> A = 2.( 1 + 2 + 22 + 23 ) + 25.( 1 + 2 + 22 + 23 ) + .... + 22001.( 1 + 2 + 22 + 23 )
=> A = 2.15 + 25.15 + 29.15 + .... + 22001.15
=> A = 15.( 2 + 25 + 29 + .... + 22001 )
Vì 15 ⋮ 15 => A ⋮ 15 ( ĐPCM )
Câu b tương tự .
Cho số nguyên a,b thoả mãn a^2+b^2+ab+3(a+b)+2018 chia hết cho 5 CMR : a-b chia hết cho 5
a,CMR nếu hai sô tự nhiên a và b có: tổng chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3
b, CMR 11100 -1 chia hết cho 1000
\(\text{a) }a+b\text{ chia hết cho 3}\)
\(\Rightarrow a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\) chia hết cho 3
CHỨNG TỎ RẰNG :
a) A=2+2^2+2^3+2^4+...+2^10 CHIA HẾT CHO 31
b)B=12^1980-2^1000 CHIA HẾT CHO 10
a) A = \(\left(2+2^2+2^3+...+2^5\right)+\left(2^6+2^7+...+2^{10}\right)\)
\(=\left(2.31\right)+2^5.31=31.\left(2+2^5\right)\)
Vậy A chia hết cho 31