tính
\(M=1^2+2^2+3^2+4^2+......+2016^2\)
tính m=2016+2016/2+2015/3+2014/4+...+1/2017/1/2+1/3+1/4+...+1/2017
Tính: (2/3 + 3/4 + 4/5 + ... + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016) – (1/2 + 2/3 + 3/4 + ... + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016).
Cách 1:
Xét số bị trừ, ta có:
(2/3 + 3/4 + 4/5 + ... + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
= (2/3 + 3/4 + 4/5 + ... + 2015/2016 + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
= (2/3 + 3/4 + 4/5 + ... + 2015/2016) x (1/2 + 2/3 + 3/4 + ... + 2015/2016) + 2016/2017 x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
Xét số trừ, ta có:
(1/2 + 2/3 + 3/4 + ... + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= (1/2 + 2/3 + 3/4 + ... + 2015/2016 + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= (1/2 + 2/3 + 3/4 + ... + 2015/2016) x (2/3 + 3/4 + 4/5 + ... + 2015/2016) + 2016/2017 x (2/3 +3/4 + 4/5 + ... + 2015/2016) =
Ta thấy số bị trừ và số trừ có số hạng giống nhau là:
(2/3 +3/4 + 4/5 + ... + 2015/2016) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
Nên phép trừ trên có thể viết lại:
2016/2017 x (1/2 + 2/3 + 3/4 + ... + 2015/2016) - 2016/2017 x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= 2016/2017 x [(1/2 + 2/3 + 3/4 + ... + 2015/2016) - (2/3 +3/4 + 4/5 + ... + 2015/2016)]
= 2016/2017 x 1/2
= 1008/2017
Cách 2:
Tính: (2/3 + 3/4 + 4/5 + ... + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016) – (1/2 + 2/3 + 3/4 + ... + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016).
Tính M , biết :
\(M=1+\frac{1}{2}\times\left(1+2\right)+\frac{1}{3}\times\left(1+2+3\right)+\frac{1}{4}\times\left(1+2+3+4\right)+...+\frac{1}{2016}\times\left(1+2+3+4+...+2015+2016\right).\)
cho:M=1+2^4+2^8+...+2^2012+2^2016;N=1+2^2+2^4+2...+2^2016+2^2018.Tính N/M
M = 1 + 24 + 28 + ............. + 22012 + 22016
16M = 24 + 28 + ............. + 22012 + 22016 + 22020
16M - M = (24 + 28 + ............. + 22012 + 22016 + 22020) - ( 1 + 24 + 28 + ............. + 22012 + 22016)
15M = 22020 - 1
M = \(\frac{2^{2020}-1}{15}\)
N = 1 + 22 + 24 + ............. + 22016 + 22018
4N = 22 + 24 + ............. + 22016 + 22018 + 22020
4N - N = (22 + 24 + ............. + 22016 + 22018 + 22020) - ( 1 + 22 + 24 + ............. + 22016 + 22018)
3N = 22020 - 1
N = \(\frac{2^{2020}-1}{3}\)
\(\frac{N}{M}=\frac{2^{2020}-1}{3}:\frac{2^{2020}-1}{15}=\frac{2^{2020}-1}{3}.\frac{15}{2^{2020}-1}=\frac{15}{3}=5\)
Tính: (2/3 + 3/4 + 4/5 + ... + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016) – (1/2 + 2/3 + 3/4 + ... + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016).
Thông cảm, mình không viết được phân số.
chấm hỏi lớn ???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
chính xác lun
đè nát đầu
TÍNH GIÁ TRỊ BIỂU THỨC A=2016+(2016/1+2)+(2016/1+2+3)+....+(2016/1+2+3+4+...+2016)
tính gt của biểu thức:
1+1/2.(1+2)+1/3.(1+2+3)+1/4.(1+2+3+4)+...+1/2016.(1+2+3+...+2016)
tính giá trị biểu thức
M= \(1^2-2^2+3^2-4^2+.......-2016^2+2017^2\)
C1 : Nếu bạn học casio thì dùng như sau: dùng xích ma nhập \(\left(-1\right)^{x+1}.x^2\) rồi cho x chạy từ 1 đến 2017
Cách 2:
\(M=1^2-2^2+3^2-4^2+.....-2016^2+2017^2\)
\(M=\left(3^2-2^2\right)+\left(5^2-4^2\right)+...+\left(2017^2-2016^2\right)+1^2\)
\(M=\left(3-2\right)\left(3+2\right)+\left(5-4\right)\left(5+4\right)+...+\left(2017-2016\right)\left(2017+2016\right)+1\)
\(M=1+5+9+...+4033=\left(\frac{4033+1}{2}\right).\left(\frac{4033-1}{4}+1\right)=2035153\)
Bài 1: Cho a,b,c thỏa mãn (a+b-c)/c=(b+c-a)/a=(c+a-b)/b
tính P=(1+b/a)*(1+c/b)*(1+a/c)
Bài 2: Cho a+b+c=0
tính B=((a^2+b^2-c^2)*(b^2+c^2-a^2)*(c^2+a^2-b^2))/(10*a^2*b^2*c^2)
Bài 3: cho a^3*b^3+b^3*c^3+c^3*a^3=3*a^3*b^3*c^3
tính M(1+a/b)*(1+b/c)*(1+c/a)
Bài 4: cho 3 số a,b,c TM a*b*c=2016
tính P=2016*a/(a*b+2016*a+2016) + b/(b*c+b+2016) + c/(a*c+c+1)
Bài 5: cho a+b+c=0
tính Q=1/(a^2+b^2-c^2) + 1/(b^2+c^2-a^2) + 1/(a^2+c^2-b^2)